A reduction in the void ratio of the unconsolidated deposits, due to overburden pressures, produced a silt and clay bridge of sufficient shear strength to withstand nominal short-term dynamic loading. The bridge over the chimney was inherently unstable and susceptible to shear failure. The probability of shear failure would be substantially increased if any of the following conditions occurred:

1. short-term de-watering of the residuum above bedrock;
2. excessive dynamic short-term loading;
3. abnormally high short-term subsurface water levels followed by rapid lowering of ground-water levels;
4. modification by man, either excavating or filling the doline.

The mechanism for collapse of the Port Royal stock pond appears to be primarily one of abnormal short-term dynamic loading in combination with the removal of 2 to 4 ft. of partially consolidated bridge material with the solution chimneys. Doline modification not only produced further local compaction and short-term vibration of the remaining bridge material by the bulldozer, but a decrease in the thickness of the bridge. During the period required to fill the pond, hydrostatic pressure on the soil bridge increased. The stock pond average soil mass density and the field moisture content W_m. In a water-c (5) system, with a field moisture of 25%, a γ_m of 110 lb/ft3 is a typical value. The field moisture value of 25% is an average based on work done in the general area by Royster (1967). Knowing that $W_s = 0.25 W$, and substituting this expression in eqn. 1 and solving for W_m:

$$W_m = \frac{110}{0.25} = 220 \text{ lb/ft}^3$$

Where h_s, and γ_s are the depth of the water and the thickness of the soil bridge, respectively. γ_s and γ_m represent the unit weight of water and the average soil density of the water-saturated system, respectively. The total overburden stress on the soil bridge $T = (W + \gamma_h + \gamma_s) h_s$:

$$T = (220 \text{ lb/ft}^3) \times 2 \text{ ft} \times 10^4 \text{ ft} = 220 \text{ lb/ft}^3$$

The overburden pressure on the bridge immediately before the collapse is estimated to have been approximately 292 lb/ft2 (3.26 tons/ft2).

The failure of the stock pond and subsequent flooding and removal of residuum and colluvium (the solution chimneys) produced an over-steepened face along the southeast edge of the slope. A shaft developed in the rear ramp mantled solution pond (Figure 2). The slump is a post-volume control produced in response to an over-steepened (55°) slope-over-lying shear failure due to the loss of lateral support. Two concave shear planes appear on the undisturbed portion of the pond bottom, approximately 65 ft and 100 ft southwest of the shear plane. Approximately 6 in. of rotational movement had already occurred along the shear plane nearest the face before this study began. Rotational movement along the second concave failure plane averaged considerably less than 6 in. Since the measurements were made in August 1973 and again in September 1974, little additional movement has taken place. Accurate measurements, in September 1974, were precluded by the owner's efforts to repair the stock pond. Efforts to repair the stock pond by filling the void have been largely unsuccessful.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Milton Moore for permission to enter the land to conduct the study and for sharing his observations. Mr. Billy Smith, Clarksville SCS office, offered the land owner's attention to the event and provided him with valuable advice concerning the soils of the area. Miss Arline Westbrook drafted the figures and Miss Gail Westerman typed the manuscript.

LITERATURE CITED

Cargill, J. X. 1970. Montgomery county loss map. Unpub. map ca 3 by 3 ft. at the Dept. of Geology, Austin State University, Clarksville, Tennessee.

EFFECT OF THE UNIVERSAL RADIATION FIELD ON HIGH ENERGY COSMIC NEUTRINOS

Ronald Elbert MccHens
Department of Physics
Fisk University
Nashville, Tennessee 37203

Abstract

We calculate the interaction of high energy cosmic ray neutrinos with the 3K radiation. In contrast to the situation with protons, electrons, and photons, no cut-off to the neutrino cosmic-ray energy spectrum should occur.

Introduction

The purpose of this paper is to calculate the effect of the 3K blackbody radiation field (Penzias and Wilson, 1965) on high energy cosmic-ray neutrinos. Several authors have investigated the consequences of the existence of the 3K thermal radiation. One consequence is to provide a source of X-rays and gamma rays of the 3K blackbody interactions with high-energy cosmic-ray electrons. (Felton, 1965; Boyle, 1965; and Gould, 1965). In addition, the interaction of the 3K radiation with high-energy cosmic-ray photons makes the universe opaque to cosmic-ray photons with energy above 2×10^{14} eV, because the photon-photon interaction energy is less than this for electron positron pair creation and the cross section for this process is large (Gould, and Schreder, 1966; and Jelley, 1966). Boyle (1965) was the first to consider the effect of the 3K radiation on cosmic-ray protons. He concluded that the time scale for energy degradation is greater than the expansion time of the universe for all protons having energies less than 10^{17} eV. However, his results are in error that he considered only the proton Compton scattering and did not take into account photo-pho production which has a much larger cross section. In independent calculations, Greisen (1966), and Zatsespin and Kuzmin (1966) showed...
that through photo-pion production the 3°K radiation would have a strong attenuating effect on cosmic-ray protons with energies exceeding 10^{20} ev. These photo-pion reactions can occur because the 3°K photons look like high-energy gamma-rays in the rest system of the protons. The mesons, resulting from the interaction, carry off a significant fraction of the energy of the cosmic-ray protons and therefore attenuate the proton spectrum. Later, Stecker (1968) made a detailed calculation of the lifetime and attenuation mean-free path of high-energy cosmic-ray protons against photo-meson production. His calculations utilized the results of the then recent laboratory studies of photo-meson production cross sections. He concluded that protons whose energies exceed 10^{20} ev will be attenuated if they originate beyond a distance of about 10Mpc.

Calculations

As stated earlier, the purpose of this paper is to calculate the interaction of high-energy cosmic neutrinos with the 3°K cosmic radiation field. In order to do this, we need an estimate of the neutrino-photon total cross section. This estimate may be gotten from the vector-meson-dominance model (VMD) (Feld, 1969), which gives us,

$$\sigma(v+\gamma) \approx a\sigma(v+p),$$ \hspace{1cm} (1)

where $\sigma(v+\gamma)$ and $\sigma(v+p)$ are the total cross sections for neutrino-photon and neutrino-proton scattering and a is the fine-structure constant (Feld, 1969). Scaling (dimensional analysis) allows us to calculate the neutrino-proton total cross section, (Lee, 1972),

$$\sigma(v+p) \approx G^2S,$$ \hspace{1cm} (2)

where G is the Fermi weak coupling constant. S is a relativistic energy variable and is given by the following expression,

$$S = 4E_\nu E_\gamma,$$ \hspace{1cm} (3)

where E_ν and E_γ are the energies of the neutrino and photon.

We shall consider the universal background radiation to be at a temperature of 3°K (Greisen, 1966). At this temperature the photon number density is 548 cm$^{-3}$ and the mean photon energy is 7.0×10^{-4} ev. These results and eqs. (1), (2) and (3) give the following value for the neutrino-photon total cross section,

$$\sigma(v+\gamma) \approx 5.64 \times 10^{-30} \text{ E}_{\nu}\text{cm}^2,$$ \hspace{1cm} (4)

where E_ν, the energy of the neutrino, is now measured in units of GeV = 109 ev.

The cross section, given in eq. (4), is related to several other quantities of physical interest (Bond, Watson and Welch, 1965): (a) the mean free path, L; (b) the average time between collisions, T; and (c) the rate coefficient, R. For the problem under consideration in this paper these physical quantities take the following form,

$$L \equiv (N_\nu)^{-1},$$ \hspace{1cm} (5a)

$$T \equiv L/C,$$ \hspace{1cm} (5b)

$$R \equiv \sigma C,$$ \hspace{1cm} (5c)

where N is the number density of the photons and C is the speed of light. Using the cross section of eq: (4), we obtain,

$$L \approx 3.38 \times 10^{25} / E_\nu \text{ cm},$$ \hspace{1cm} (6)

$$T \approx 1.13 \times 10^{25} / E_\nu \text{ sec},$$ \hspace{1cm} (7)

$$R \approx 1.69 \times 10^{-28} E_\nu \text{ cm}^2 / \text{ sec}.$$ \hspace{1cm} (8)

Discussion

The radius of the universe is believed to be of the order of 10^{28} cm (Harwit, 1973). Thus, we learn from eq. (6) that the universe is essentially transparent to neutrinos having energies less than about 10^7 GeV. This conclusion is not changed if we consider the interaction of cosmic neutrinos with other cosmic particles, such as electrons, photons, protons and heavy nuclei, because even though their interaction cross sections are large, the number densities are smaller by a factor of at least 10^{-4} to 10^{-3} as compared with the background 3°K radiation (Rose, 1973). In addition, if the neutrinos have an energy spectrum that follows a power law, as is the case for other cosmic particles (Weekes, 1969), then we expect the flux of neutrinos with energies larger than 10^7 GeV to be extremely small.

Likewise, the average time between interactions (collisions) is of the order of 10^7 times the estimated lifetime of the universe for neutrinos having energies as large as 10^7 GeV. At the energy, the rate coefficient R is approximately $10^{-21}\text{ cm}^2 / \text{ sec}.$

We therefore conclude that cosmic neutrinos do not interact in any significant manner with the 3°K background radiation and consequently, no cut-off is expected in the neutrino cosmic-ray energy spectrum.

Acknowledgements

A grant from Fisk University for support of this work is gratefully acknowledged.

Literature Cited

