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WHICH LABORATORY ACTIVITY BEST SIMULATES THE FIRST-ORDER KINETICS OF
RADIOACTIVE DECAY?

TERRENCE A. LEE
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ABSTRACT—A review of the literature indicates that many different types of activities have been used in
undergraduate science laboratories to illustrate the concept of half-life. The choice of a specific activity will depend on the
desired educational outcomes, the sophistication of the students, and the cost of materials. In this paper, I compare and
contrast four half-life experiments that have been used in undergraduate science laboratory and lecture courses. The
experiment giving the best verification results, based on agreement between experimentally determined values and

theoretical values, was the decreasing volume model.

In undergraduate chemistry or general education science
courses, students commonly perform an experiment investi-
gating radioactive decay. The experiment usually involves a
relatively simple, single decay process, such as "*C—!4N 4 B,
and illustrates the important concepts of reaction kinetics and
half-life. For legal and financial reasons, undergraduate
students will probably not use radioactive isotopes. Instead,
an experiment simulating the mathematical characteristics of
radioactive decay will often be substituted.

A search of the Journal of Chentical Education online index
for the topic “kinetics” produced 639 papers. These papers
included chemical experiments to measure kinetics in the
undergraduate laboratory, half-life experiments using various
radioactive isotopes, computer programs to simulate kinetics,
calculation methods, classroom activities, and various physical
simulations.

Some of the physical simulations that obey first-order
kinetics include the flow of gas through an orifice (Coffin,
1948; Kahn, 1957) or the flow of liquids through capillaries
(Lemlich, 1954; Davenport, 1975; Erwin, 1992). Other
methods take a games approach (Harsch, 1984) and include
such activities as flipping coins (Sanger ct al., 2002; Sanger,
2003) or dice shaking (Schultz, 1997). Others involve the
transfer of water using dippers of various shapes (Burk and
Gunter, 1977), or the cooling of hot water (Birk, 1976).

With all of these choices, one is bound to ask “Which is
the best simulation for my students?” The answer (o this
question depends on several factors. Is the experiment intended
as a simple verification experiment, or is it intended to be a
guided discovery experiment? How sophisticated are the
students conducting the experiment? How complicated is the
experimental procedure? Does the experiment require extensive
preparation and expensive materials?

All of the above simulations use relatively inexpensive
materials. The experimental procedures given are clear and
straightforward. Neither the preparation time for the experi-
ment, nor the laboratory time required to conduct the
experiment are excessive. In selecting the simulation to be
used, one important choice for the instructor is “Will the

students have to measure clapsed time?” In many of the
simulations described above, such as flipping coins, shaking
dice, or dipping water, iteration can be substituted for elapsed
time. For students having little practical laboratory experience,
this may be a desirable simplification.

Another critically important question for the instructor is
“Is this a simple verification experiment or a guided discovery
experiment?” Verification experiments are important exercises.
allowing students to develop and gain confidence in their
laboratory skills. Guided discovery experiments are signifi-
cantly different from verification experiments, providing
students the opportunity to experience the “full” scientific
process: observation, hypothesis, experiment to test hypothe-
sis, revision of hypothesis. A verification experiment may not
be useful as a guided discovery experiment, and vice versa.
While it is impossible to eliminate all experimental error, a
properly designed verification experiment should minimize
experimental errors. This is especially important for students
with little or no laboratory experience. Such students typically
interpret normal, random variations as mistakes and conclude
that either 1) they aren’t any good at science or 2) the
experiment is wrong.

In this paper, four experiments of first order kinetics were
compared for accuracy and precision of results, with the goal
of identifying the “best™ verification experiment. The exper-
iments evaluated were the coin-toss model, the dice roll model,
the replacement model and the decreasing volume model.
These experiments were chosen based on their simplicity of
design and ease of conceptualization.

EXPERIMENTAL

Coin-toss model—The coin-toss model uses a number of
objects such as coins, M&Ms' i playing cards, or other
similar two-sided objects (Sanger. 2003). The objects are
placed into a container, thoroughly mixed, and then poured
onto a table. All objects displaying a designated side are
removed from the pile. The remaining objects are returned to
the container and re-mixed. The procedure is repeated until




July—October 2007

some fixed number of objects is left. In this experiment, 100
quarters were used, and the designated side for removal was
“heads”. The experiment was continued until six or fewer coins
were left. Five replicates of this experiment were performed.

Since there are two possible outcomes of equal probability
for each coin, the experiment can be easily modeled. The
expected number of coins remaining is

X = Nptail

where N is the number of coins in the container and pe,; is the
probability of getting a tail (Taylor, 1982). The expected
standard deviation is determined by

o = \/Nptui/p/mml

Dice roll model—The dice roll model is a variation of the
coin-toss model. A number of dice are placed into a container,
thoroughly shaken, and poured onto a surface (Shultz, 1997).
Dice showing a given number, or range of numbers, are
removed, and the remaining dice are re-rolled. In this
experiment, 50 dice of identical size were used. Dice showing
“1” were removed, and the remaining dice were re-rolled until
either six or fewer dice remained, or 12 iterations were
completed. Five repetitions of each experiment were per-
formed. Theoretical results for this experiment were calculated
as in the coin-toss model with substitution of the appropriate
probability values.

Replacement model—In the replacement model, objects
with one particular feature are replaced by similar objects
having a different, distinctive feature (Harsch, 1984). The most
commonly used feature is color. A relatively large number of
white objects, such as beads, will be combined with a smaller
number of black beads. The beads are thoroughly mixed and
without looking into the container, a fixed number of beads
are removed and examined. Any black beads are returned to
the container, while all white beads that were removed are
replaced with an equal number of black beads. The number of
white beads remaining is determined by subtraction and the
procedure is repeated until ten or fewer white beads remain in
the container, or until a total of 20 iterations have been
performed.

This experiment began with 90 white beads and 10 black
beads. For each sampling interval, ten beads were removed
and examined. Since the students would be able to feel
differences in size or texture, it is extremely important that all
objects be indistinguishable by touch. Five repetitions of the
experiment were performed.

This experiment can be readily modeled, but the
calculations are more complicated due to the changing
probabilities of selecting white beads. For the first selection
of ten beads, the probability that a white bead will be chosen is
0.90. For the second sclection of ten beads, the probability that
a white bead will be chosen is 0.81. Nevertheless, the expected
number of white beads remaining and the standard deviation
can be calculated as above.

Decreasing volume model—In the decreasing volume
model (Harsch, 1984), a suitable container such as a 25 mL
graduated cylinder is filled with water, and the initial volume
recorded. A glass tube or other suitable “straw’” is dipped into
the graduated cylinder until the bottom of the tube touches the
bottom of the cylinder. The open end of the tube is covered
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with a finger, and the tube is removed, taking care that the
portion of water inside the tube does not drip out of the end of
the tube. The new volume in the graduated cylinder is recorded
and the procedure repeated. This procedure can be continued
until almost all of the water has been removed. In our
experiment, 19 aliquots were removed for a total of 20 volume
measurements. Five repetitions were conducted.

Theoretical calculations for this model are the most
complex of the four models investigated. Accurate dimensions
of the graduated cylinder and the glass tube are required. The
inside height of the 25.0 mL mark was measured at different
locations using a steel ruler calibrated in millimeters. The
average height was found to be 90.25 mm. The cylinder was
filled with water to the 25.0 mL mark, and the mass of water
contained by the cylinder determined. The temperature of the
water was measured, and from the density of water at the
recorded temperature, the volume of water was determined.
Assuming the graduated cylinder to be a uniform cylinder,
these measurements gave an average internal radius of
0.943 cm.

The outside diameter of the glass tube was measured to
the nearest 0.1 mm at several locations along its length, and
produced an average value of 0.60 cm. To determine the
average internal radius, one end of the tube was sealed with
Parafilm™, and the tube filled with water. The mass of water
was measured to within 0.01 grams, and the volume calculated
as described above. The length of the tube was 19.3 cm, and
the average internal radius was determined to be 0.193 c¢m. The
difference between the internal and external radius allowed
calculation of the volume of glass per unit length of the tube.

Since the glass tubing will displace a finite volume of
water, it is necessary to account for the corresponding increase
in water level. The volume of glass submerged at the 25.0 mL
mark was calculated, and this volume was added to the
calculated volume of the graduated cylinder at the 25.0 mL
mark. From this calculated volume, the new water level in the
graduated cylinder was calculated, and a new volume of
submerged glass determined. These calculations were contin-
ued until two consecutive volumes, representing the total of the
water volume and submerged glass volume and agreeing within
0.1 mL were obtained. From the final calculated volume, the
final height of the water was determined, and the volume of
water inside the glass tube was calculated and subtracted from
the original theoretical volume of the graduated cylinder. No
attempt was made to correct for the additional volume in the
tube due to capillary action.

RESULTS

Coin-toss model—A plot of In(coins remaining) versus
iteration for five replicates, where iteration represents elapsed
time, is shown in Fig. 1. For any reaction exhibiting first order
kinetics, the slope of the line is used to calculate the half-life of
the reaction using the relationship t;,, = 0.693/slope. The total
number of objects at the start of the experiment, called A,, can
be found from the formula A, = ™" Table 1 summarizes
the linear regression values for the five experimental replicates
and for the theoretical values. The half-life and A, values were
calculated using the equations described above. Since all of the
slopes calculated were negative, the absolute value of the slope
was used to determine half-life.
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FIG. 1. Plot of In(coins remaining) versus iteration for the coin-toss model. Results of five replicates presented.

TABLE 1. Linear regression, half-life, and total number of
objects at the start of the experiment (Ap) values for the coin-
toss model.

Trial Slope  Intercept R Half-life A,

1 —0.680 4.660 0.99653 1.0 106

2 —0.578 4.588 0.99803 1.2 98

3 —0.617 4,500 0.99516 1.1 90

4 —0.626 4,450 0.99168 1.1 86

5 —0.774 4,581 0.99595 0.9 98
Mean 1.1 96

Sx 0.1 8

Theoretical —0.693 4.605 1.0 1.0 100

The individual half-life values appear reasonable and give
an average value of 1.1 = 0.1. These half-lives correspond
closely with the theoretical value of 1.0. The estimate for the
number of coins initially present fluctuates over a large range
(—14% to 6%), giving an average value of 96 = 8 coins.

Dice-roll model—A plot of In(dice remaining) vs. iteration
for the five replicates is shown in Fig. 2. Table 2 summarizes
the linear regression values for the five experimental replicates
and the theoretical values. There is more variation in the
individual half-life values than was observed in the coin-toss
model, with an average half-life value of 3.4 * 0.8,
corresponding favorably with the theoretical value of 3.8.
The estimate for the number of dice originally present gives an
average value of 51 £ 5 dice.

Replacement model—The In(white beads remaining) vs.
iteration for the five replicates is shown in Fig. 3. Table 3
summarizes the linear regression values for five replicates and
the theoretical values. The average half-life value was 5.9 = 1.0,
which compares favorably with the theoretical value of 6.6. The
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FIG. 2. Plot of In(dice remaining) versus iteration for the coin-toss model. Results of five replicates presented.

TABLE 2. Linear regression, half-life, and total number of
objects at the start of the experiment (Ag) values for the dice-
roll model.

Trial Slope Intercept R Half-life A,

1 —0.277 4.045 0.94963 2.5 57

2 —0.147 3.798 0.98936 4.7 45

3 —0.231 3.912 0.99250 3.0 50

4 —0.206 3.870 0.99343 3.4 48

5 —0.198 4.036 0.99364 3.5 57
Mean 34 51

Sx 0.8 5

Theoretical —0.182 3912 1.0 3.8 50

estimate for the number of white beads originally present
fluctuates from 88 to 102, with an average value of 97 + 6.

Decreasing volume model—The In(mL of water remaining)
vs. iteration for the five replicates is shown in Fig. 4. Table 4
summarizes the linear regression values for this experiment.
The average half-life was 13.0 = 0.1, compared to a theoretical
value of 15.2. The estimate for the initial volume of water
present gave an average value of 24.9 = 0.1 mL.

DISCUSSION

The coin-toss, dice-roll and replacement models allow
relatively simple predictions of ti» and A, and their
theoretical behavior can be readily modeled. While these
experiments are simple, they all suffer from the same basic
problem: the number of items being manipulated is statistically
small. Normal, random variations produce results with
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FI1G. 3. Plot of In(white beads remaining) versus iteration

TABLE 3. Linear regression, half-life, and total number of
objects at the start of the experiment (Ao) values for the
replacement model.

Trial Slope  Intercept R Half-life A,

1 -0.130 4.622 0.98028 53 102

2 —0.129 4.606 0.99128 5.4 100

3 —0.134 4.630 0.98918 52 102

4 —0.113 4.533 0.99742 6.1 93

5 —0.0909  4.481 0.99610 7.6 88
Mean 5.9 97

Sx 1.0 6

Theoretical ~ —0.105 4.500 1.0 6.6 90

for the coin-toss model. Results of five replicates presented.

significant deviations from both the predicted values and the
mean values. Of the first three simulations, the replacement
model produces the lowest relative standard deviation
(measured by %RSD), although above 6 iterations significant
divergence of replicate experiments is observed (Fig. 3).

Statistical variation is greater in smaller populations than
in larger populations, so the results obtained for the coin-toss,
dice-roll, and replacement models are not surprising. However,
the average first year science student, or the average general
science student, may not have the necessary mathematical
background to distinguish random, normal variations from
flaws in experimental design or mistakes in experimental
technique.

There can be little doubt that from a conceptual
standpoint, the simplest of the four experiments is the coin-
toss. Nevertheless, what may appear to be a “reasonable”
outcome from this experiment might not be reasonable in
practice. Ordinary probability would indicate that the most
probable sequence would be 100 — 50 - 25 —- 12 — 6. We
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FIG. 4. Plot of In(water remaining) versus iteration for the decreasing volume model. Results of five replicates presented.

can easily calculate the probability of getting exactly 50 ““tails”
from flipping 100 coins using the equation

TABLE 4. Linear regression, half-life, and total volume of n 1\"
water at the start of the experiment (Ag) values for the decreasing P = Vi(n—¥V)! ( ) )

volume model.
where P is the probability of having V successes in » trials

] ) (Taylor, 1982). From this calculation, we can determine that
Trial Slope  Intercept R Half-life A, only about 8% of the time will we get exactly 50 tails from
flipping 100 coins. Similar calculations result in 11% to get 25

—0.0534  3.221 0.99981 13.0 25.0

1 tails from 50 coins flipped, 15% to get 12 tails from 25 coins
2 —0.0532 3.213 0.99970 13.0 24.9 flipped and 22% to get 6 tails from 12 coins. The overall
3 -0.0539 3.214 0.99989 12.9 249 probability of getting the sequence described is the product of
4 —0.0528  3.215 0.99975 13.1 24.9 the individual probabilities, and is approximately 0.03%. This
5 —0.0537  3.217 0.99983 12.9 25.0 translates into 1 in 3443 trials resulting in this sequence.
Mean 13.0 24.9 It is entirely possible that hundreds of students could
Sx 0.1 0.1 perform replicate coin flipping experiments without ever
Theoretical ~— —0.0456  3.227 1.0 15.2 25.2 obtaining the most probable outcome. Whether or not the

students are able to explain or understand why their
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experimental data are different from the expected results
depends upon their level of mathematical sophistication.

The dice-rolling and bead replacement models are subject
to similar random variation. Of course, these topics can and
should be covered in either the experimental procedure or
during the laboratory briefing. However, if the purpose of the
experiment is to demonstrate and verify a first order kinetic
process, wouldn't it be more appropriate to use a well-behaved
experimental procedure?

The volume reduction model is clearly the most well-
behaved of the four models presented. For a given graduated
cylinder/straw combination, the maximum variation between
replicate volume measurements was 0.4 mL or approximately
4%,. Comparison of Fig. 4 with Fig. 1-3 clearly shows that the
precision between replicate measurements is much higher for
the volume reduction model. The percent average error in A,
calculated as

(ﬂ,,r!uwwh.-;.;l — A,_;rrwr.i'ug) % 100

A theoretical

for the volume reduction model (0.8%) is lower than for the
other three models (2-8%). The average error in hall-life for
the volume reduction model (14%) compares favorably with
the other three models (10%).

Refinement of the experiment and the resulting theoretical
calculations may result in higher accuracy for half-life
measurements. One refinement would be to substitute a
thinner walled tube, such as a plastic straw, for the glass tube.
This would minimize the displacement of the water level due to
the tube. However, careful consideration would have to be
given to the materials comprising the tube, since thinner walls
can result in the tube becoming distorted during use. Using a
tube with a greater internal diameter would eliminate errors
associated with the liquid meniscus. Graduated cylinders have
rounded bottoms, and this feature was not accounted for in
modeling the experiment. Using a different container without
the rounded bottom should result in better theoretical
calculations.

The volume reduction experiment is not subject to the
same kinds of random errors as are the other three
experiments. In the volume reduction experiment, the most
significant source of error is the accuracy with which the
graduated cylinder can be read. It is easy to estimate the
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volume to within = 0.1 mL. This relatively small random error
remains constant throughout the experiment. Over the range
of volumes measured, the relative error amounts to less than
1%. This compares very favorably with the theoretical error
ranges for the other experiments evaluated.

Clearly, the volume reduction experiment is the best of the
four evaluated. It gives the highest precision for replicate
measurements of half-life and A,. The accuracy of A,
measurements is unsurpassed. The only deficiency in the
experiment is the slightly larger error between theoretical and
experimental half-lives.
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