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ABSTRACT—The Google internet search engine is well known for its success. In addition to it being of intrinsic
interest, the underlying algorithm can be applied to any matrix Markov process and so has broad interdisciplinary
applications. This article is directed to readers across the sciences and technology, and is intended to give a generally
accessible introduction to the mathematical basis of the Google search algorithm.

Early search engines for the internet gave out long lists of
unordered ‘“title matches”. In 1998, Brin and Page published
their results (Brin and Page, 1998) on PageRank, a new
approach to ranking websites, which in part led to the success
of Google™. The approach appeals directly to the natural
graph structure of the internet. In an efficient way, it uses the
citation (link) pattern of the network to rank sites. The result,
therefore, does not give some absolute rank of a document, but
measures how a document fares in the “citation competition”
relative to other documents in the same network. It is
commonly supposed that once a month or so Google runs
a crawl and selection from the internet to allow for an update
of their database and website rankings.

The success of the Google search engine now is common
knowledge; and mathematical analysis of the PageRank
algorithm is based on well-known (but non-trivial) results that
reach back to the 20'™" century. The mathematician may recall
the fixed-point theorems of Brower, Hahn-Banach (Istratescu,
1981) and the matrix theorem of Perron-Frobenius (Berman
and Plemmons, 1994; Meyer, 2000). There is a body of
literature on search methods. An excellent survey article that
includes a discussion of PageRank (as well as other eigenvector
methods for web information retrieval) is (Langville and
Meyer, 2005). A further bibliographical source can be found in
(Kamvar et al., 2004; Sankaralingam et al., 2003). Specialized
articles take the defining equation for PageRank as a starting
point, and go on to consider: Aspects of how to use the
defining equation (Craven acc. 2004; Rogers, 2002); Theoret-
ical results on convergence rates (Kamvar et al., 2004); and
Illustrations of non-trivial implementation of algorithms, and
their refinements (Sankaralingam et al., 2003). There is a very
good article for mathematics students (Bryan and Leise, 2006).
The derivation of the equation, though, does not follow the
Brin and Page approach as such, but is based on the interesting
linear ‘“‘continuity equation” given in (Kleinberg, 1999).
Ultimately, the two approaches are mathematically equivalent.
The Bryan and Leise article also provides proofs regarding
linear algebraic quantities involved in the PageRank formula.

In addition to being of intrinsic interest, the algorithm has
broad interdisciplinary significance. Indeed, the Google algo-
rithm can be applied to any matrix Markov process. This short
article therefore is expository in nature, and is intended for

a general audience in science and technology. Having a modest
familiarity with matrix multiplication would be helpful
background. For the purposes of illustration, we use only 2
D or 3 D examples. All results extend to the general case.

CITATION RANK OF A WEBSITE

Suppose we have a collection of only three documents A,
B and C. Of course, for actual internet searches, a typical
collection of documents (websites) will have millions of sites.
Suppose that document A cites B, but not C; B cites both A
and C; C cites only A. This citation pattern can be
represented by the directed graph in Fig. 1. The problem
now is to obtain a relative ranking for the documents, using
only the citation pattern. The discussion in Brin and Page
(1998) provides the following framework: Suppose it is
known that document C is not significant in the field, while A
is an authority. In terms of citations, the rank of A should
not be significantly affected by the reference to it in C; while
the authoritative A that cites B can be taken to add
importance to document B; and obviously a document
cannot increase its rank by citing itself.

The Brin and Page (1998) citation ranking therefore
involves both the relative numbers of citations and the initial
rankings of the documents. A key step in the derivation is not
the initial rankings as such, but noting how the rankings
change by virtue of the internal citation pattern within the
collection. This is analogous to, say, the undergraduate
exponential law that is obtained for the growth of a cell
population. In that case, one supposes an initial population,
but goes on to derive the rule for how the population changes.
Following this same approach with the citation pattern
problem, and invoking the Brin and Page framework
mentioned above, we get the following: Suppose initial ranks
R, Rg, R, then the citation pattern adds rank to documents
A, B and C by the equations

Citation rank added to A = (0) R4+ (1/2) Rg+ (1) Rc
Citation rank added to B = (1) R4 + (0) Rz + (0) R¢
Citation rank added to C = (0) R4 + (1/2) Rg+ (0) R¢
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FI1G. 1. Arrows indicate that source document cites
terminal document.

In matrix notation, we have

Citation rank added to A 0 1/2 1 Ry
Y = | Citation rank addedtoB |=|1 0 0 Rp
Citation rank added to C 0 1/2 0 Rc

= MR,

where Y is a 3 X 1 column vector that represents the citation
ranks added to each document, M is the 3 X 3 link matrix (of
relative citation frequencies), and R is the 3 X 1 column vector
of initial ranks. Each coordinate axis of R represents the
corresponding document.

This is a 3-D weight distribution rule, where the weight
attributed to document A is represented by the resulting first
coordinate of MR, the weight attributed to document B is
represented by the resulting second coordinate of MR, and so
on. A classical way to define a reference scale for a weight
distribution is to use one of its “principle axes” (Marion and
Thornton, 1995). For example, the longest axis of a (uniform
density) ellipsoid is a principal axis. Each document has its
weight given by the components of MR. The classical result is
that to calculate a major axis we identify a direction R that is
parallel to MR. Finding the alignment of these two vectors
reduces to solving the algebraic eigenvalue-eigenvector equa-
tion MR = aR, for some real number a. In this situation,
a major axis is found when there is largest positive a > 0. Why
it is that for a citation pattern there exists an eigenvector with
non-negative components with a positive eigenvalue ¢ > 0,
will be discussed in the section below. For the citation
problem, a non-negative component of an eigenvector
indicates the weight of the corresponding document along
the scale determined by the eigenvector direction. In the
example given above with documents A, B and C, we
first find the eigenvalues by solving the characteristic equation

det (M —xI) = (x—1) (x+ 1/2) = 0. Here there is
only positive cigenvalue x = 1; substituting into the
eigenvector equation, a corresponding eigenvector is found

e e —— ]
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to be R = [2, 2, 1]. Recall that the objective is to rank
the documents relative to each other. Along the direction of
R = [2, 2, 1], the first and second document tie, each
with weight 2, while the third receives weight 1. This of course
corresponds directly to the original citation pattern seen in
Fig. 1, where each of A and B both receive two citations, while
C only receives 1. A convenient way to normalize measure-
ments is to define a “length” of R = [2, 2, 1] as the sum of
absolute values of its components: 2 + 2 + 1 = 5. The citation
rank is then defined in terms of the normalized eigenvector
1
A

equal to 1. The first document therefore geéts citation rank

2
e = |
s(221]= |5,

Y= normalized to have “length™

Ll

w| b

2 . 1
the second also gets % and the third gets =

Example—For an extreme case, consider a collection A, B,
C, X where document X is not cited by any other document. It
follows that regardless of how many times X cites other
documents, the citation rank of X within the collection is zero.
This is intuitively the right result. One of several ways to prove
this is to note that citation rank added to document X is then
(OR,4 + (O)Rg + ()R- + (O)Ry. Consequently, the column
space of M (and in particular the defining eigenvector) has no
X component.

EXISTENCE OF EIGENVECTORS FOR THE
CITATION RANK

While it is non-trivial to prove rigorously (even in 3-D),
one way to obtain the existence of a suitable eigenvector is to
look to the geometry of the situation. See, for example, (Lay,
1992). Suppose that R is any initial rank vector [R, = 0, Rz =
0, R¢c = 0]. Whatever the citation pattern, the entries of the
matrix M are the non-negative relative citation ratios. But,
under matrix multiplication, the components of MR consist of
sums of products formed from the entries of M and R. So, the
components of MR also are all non-negative. In other words,
M takes a vector R with non-negative entries to a vector MR
again with non-negative entries. In 3-D, M therefore preserves
the octant of non-negative triples [Ry = 0, Rz = 0, R = 0].
This “confinement” may stretch, contract or even switch
directions within the non-negative octant. However, because
multiplication by M leaves the octant as a whole invariant, this
“confinement” of the octant necessarily will leave at least one
direction invariant as well. Hence, there is at least one vector R
with non-negative components such that MR = gR, and where
a is necessarily also positive. If the eigenvalue were negative,
the resulting vector aR would not be in the non-negative
octant. The direction R with the largest non-negative
eigenvalue then gives the eigenvector that solves the problem.
That is, we obtain a major axis of the weight distribution
determined by the citation pattern M. For a matrix of
exclusively non-negative entries, the existence of at least one
fixed direction in the non-negative octant is a classical result in
mathematics that has been proved from several viewpoints.
The topological-geometric approach just described can be
made rigorous by using the Brower Fixed Point Theorem
(Istratescu, 1981). Or, since the equation involves matrix
multiplication in finite dimensions, one may instead appeal to
the Perron-Frobenius theorem (Berman and Plemmons, 1994:
Radjavi, 1999; Meyer, 2000).
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ALGORITHM FOR FINDING THE EIGENVECTORS
FOR CITATION RANK

The calculations involved in trying to directly solve an
eigenvalue equation for an actual system of say, one million
equations, would be formidable. Brin and Page (1998) took
another approach. Instead of requiring an exact result, they
looked to obtaining an approximation. As it happens, one may
use a classical power iteration technique to approximate the
eigenvector solution. Again, the rigorous proof of this result is
beyond the scope of this expository article. A key ingredient is
the Hahn-Banach theorem (Istratescu, 1981).

To illustrate the technique, consider the example given by

) 1 0
the 2 X 2 matrix A=[0 2/3
positive eigenvalue is 1. Now let v = [x = 0, y =0] be any seed
vector with non-negative entries. Calculating A"v, we have the

} Notice that the largest

sequence [ x, ( 2/3 ) » ]. This converges to the eigenvector v =

[x, 0] corresponding to the largest positive eigenvalue a = 1.
Note that in order for the resulting eigenvector v = [x, 0] to be
a non-zero, it is crucial that the first component x of the seed
vector v = [x = 0, y =0] be non-zero. This is mentioned here
because, in addition to its mathematical significance, this also
plays a key role in the algorithm for the Google PageRank.

30
0 2
above technique directly, the sequence A”v = [3" x, 27 y]
diverges. A main purpose of the technique, though, is to
identify an eigenvector direction. To deal with the divergent
sequence, one approach, therefore, is to keep track of the
direction of each A"v = [3" x, 2" y], but to scale the terms so
that they converge. The sequence has two divergent factors, the
powers of 3 and the powers of 2. A natural choice, there-
fore, is to divide by the largest positive eigenvalue 3, and define
B = % A = [ (1) 2(/)3 ] The original method now works for

B, with 1 as the largest positive eigenvalue. Once we have the

Now consider the example A = . Using the

solution for Bv = v, wecan use B = §A to get that Av = 3v. In

other words, the eigenvector directions for A and B are the same.

For the typical link matrix M, the number of rows is in the
millions, and the eigenvalues are not known in advance. As it
turns out, though, essentially the same effect as above may be
obtained by normalizing one step at a time. This is
accomplished by starting with any seed vector u, with the
only requirement being that all entries are strictly greater than

zero, At each power iteration M"u | divide the vector by its
P {n)
u

largest positive entry, p, say. We then obtain a sequence
n
that converges to an eigenvector v, for the largest positive

eigenvalue. Just as in the example above, the limit vector v is
normalized to 1, and the normalized components define the
citation ranks for the collection of documents. In practice, one

does not use the limit vector, but approximates the limit by the
My

convergent terms . The number n of iterations used

n
depends on the accuracy required and the convergence rate.

GOOGLE PAGERANK-ADJUSTED CITATION RANK

The Brin and Page PageRank is a modification of citation
rank. The modification is obtained by adding a damping term
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to the eigenvalue-eigenvector equation MR = gR. “The (extra
and fixed) parameter d is a damping factor which can be set
between 0 and 17 (Brin and Page, 1998). The PageRank is
defined in the same way as citation rank (that is, by taking the
components of a normalized eigenvector) except that a constant
“rank source” is introduced into the defining equation through
the function E(R)=(1 —a1 =1 —-a[L, 1,.....,11=[1—d),(1
—d),....,(1 — d)]. Note that the constant function E(R) = (1 —
d)1 is not the same as the identity function I(R) = R. Finally,
the ecigenvector used for the PageRank is taken to be
a (normalized) solution of the non-linear equation given by
the (convex) combination [dM + (1 — d)1]R = dR.

Brin and Page (1998) give an “Intuitive Justification” for
the damping factor: “the d damping factor is the probability at
each page the ‘random surfer’ will get bored and request
another random page” (Brin and Page, 1998). On present
showing, one of the mathematical roles of the damping term
may be easily understood by noting that the Google algorithm
is a power iteration. Because of the damping factor, even if
some of the initial components of a seed vector are zero, the
next term in the sequence will always be positive in all of its
components. Consequently, the limit eigenvector is necessarily
non-zero. Note also that the choice of damping factor will
clearly affect the convergence rate. In practice, the damping
factor d is taken to be approximately 0.85 (Brin and Page,
1998). The damping factor also helps resolve certain technical
details when running the algorithm for graph structures that
occur in actual collections. Going into further details, however,
would go beyond the scope of this introductory article.
Numerical examples are presented in Bryan and Leise (2006)
and Pandurangan et al (2002).

DISCUSSION AND NATURAL NETWORKS

As mentioned at the beginning of the article, a main
purpose is to offer a generally accessible introduction to the
mathematical basis of the Google search algorithm. For the
science reader, a familiarity with matrix multiplication was
assumed. The Google (relative) ranking is an adjusted citation
rank based on the natural citation (graph) structure of the
internet. We can formulate citation rank as a weight distribu-
tion, determined by the citation patterns of the documents. A
ranking for the distribution can then be formulated relative to
a principle rotational axis of the distribution. A principle
rotational axis is obtained from an eigenvector R of the weight
distribution matrix M. The matrix M consists of non-negative
entries and therefore preserves the non-negative octant (more
generally non-negative cone). It follows that there is an
eigenvector R with non-negative components and with largest
positive eigenvalue a > 0. The components of the normalized
eigenvector are the citation ranks. That this is possible can be
seen in elementary diagrams. Known proofs, however, require
20th century mathematical theorems beyond the scope of this
article. To implement the algorithm for actual networks of
millions of documents, the Google algorithm uses the power-
iteration technique to approximate the eigenvector. Note also
that Google adds the damping term (1 — d)1 to the original
citation rank equation, thus giving the new eigenvector-
eigenvalue equation [dM + (1 — &)1]R = 4R. Since it is also
assumed that 0 < d < 1, the power iteration normally produces
a non-zero eigenvector with positive eigenvalue a > 0.
Exceptions are not treated in this introductory article.




JANUARY-APRIL 2007

For the reader who is familiar with Markov processes
(Isaacson and Madsen, 1976), notice that entries of each
column of a link matrix M are all non-negative and sum to 1.
Also, given a matrix Markov process, one may investigate the
citation ranks and PageRanks for the events. Markov
processes are ubiquitous in contemporary studies, including;
particle physics; probabilistic change of state chemical net-
works; cell and/or cell-virus compartment models (such as in
cancer and HIV studies); population models; ecological
systems; birth-death and catastrophe theory; and so on. In
the case of internet websites, the matrix entries can be used to
define probabilities that a reader move from website A to
website B, etc. Havin g a higher citation rank then represents
a website with a higher probability of a maintained reader,
which would be appropriate for a website that is an
“authority™ in the field. In certain natural networks, citation
ranks give relative probabilities of survival,
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