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ABSTRACT—The conventional k-step Adams-Moulton formula is converted to a continuous form by using the
integrand approximation process. For a specified step number k, k different finite difference formulas are recovered
from the continuous form by evaluating it at some grid points. The k discrete formulas are simnultaneously applied
over successive blocks of meshes for a direct solution of nonstiff first order initial value problem. In this sense, the
problem is solved without the need for any other methods to start the integration process.

In this paper, we develop a direct solution approach for solv-
ing the initial value problem of the form

(1.1)

A solution is sought in the range a = x < b, where a and b are
finite real numbers, and

y' = f(x, y), y(a) =y,

Aa=Xo <X <Xy---
is a given discretization of [a, b]. Thus,
X, = a + nh, n=012,...,N

where N = (b — a)/h and h is a constant steplength.
We assume that f is Lipschitz continuous in y, that is that L
exists so that

lf(x, yp) — f(x, Y2)| = LIYI - Y2|,

for all x € [a, b} and for all y,, y, in the region of interest. This
condition ensures that (1.1) has a unique solution (Henrici, 1962).
The general linear multistep method of step k is of the form

0<L<1

k-1

k
_z ¥y, + h 2 Bifns;
0 =0

j=

Yok = (1.2)

where «; and PB; are constants and || + |8 # 0. The main
advantage of the linear multistep methods of the type (1.2) is that
they are more economical than the one-step methods. For in-
stance, they require fewer function evaluations of the derivative
f than the one-step methods in the range of integration [a, b].
The conventional Adams Methods discussed in (Conte and De
Boor, 1982; Gladwell and Sayers, 1980; Lambert, 1973) are spe-
cial cases of (1.2) and are the most popular multistep methods
used for solving (1.1). They are usually implemented as predic-
tor-corrector methods using both an explicit and an implicit meth-
od to calculate y,,,. In spite of their popularity, certain limitations
of their applications are known as follows: They are discrete and
therefore uneconomical for producing dense output. They are not
self-starting and hence the starting values y;, v, ..., Y., are
provided from other methods. This was done in the past by one-
step methods like the Runge-Kutta method (Atkinson, 1989) and
more recently by variable mesh/variable order methods. These

are important limitations that can affect the performance of the
Adams Methods.

The main objective of this paper is to present a block method
for (1.1) which overcomes these limitations. In this light, we seek
a continuous solution for (1.1). Recent research such as (Sara-
fyan, 1990; Jackson, 1988; Lie and Norset, 1989; Onumanyi et
al, 1994) indicate growing interest in continuous integration al-
gorithms for (1.1). Continuous Adams Methods can be derived
by the method of collocation (Jator, 1992) and by the matrix
inversion method (Onumanyi et al, 1994). However, higher order
continuous Adams Methods are easily derived by the integrand
approximation (Jackson, 1988; Jator, 1997) as in this paper. A
Conventional k-step Adams-Moulton Method is converted to a
continuous form and some finite difference formulas embedded
in the latter are recovered. The finite difference formulas are then
simultaneously applied as a block method for the direct solution
of (1.1).

DERIVATION OF THE CONTINUOUS
ADAMS-MOULTON METHODS

In this section, we construct the continuous forms of the
Adams-Moulton Methods by the integrand approximation pro-
cess. We consider the initial value problem (1.1) and the New-
ton’s forward interpolation formula for a real analytic P(x) for
these derivations, where P(x) is given by

P(x) = P(x, + sh) = > [C;Alf,] (1.3)
j=0
where s = (x — x,)/h and Cp = (sD/[(s—})!j!].
In general, we let

= (x - xn+k—l)

t
h

where k is the step number of the method. It can be shown that
t is related to s as follows:
s=t+k— 1.

In constructing the Continuous Adams-Moulton Schemes,
we integrated the differential equation (1.1) from s = k — 1 to
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TABLE 1. Continuous Adams-Moulton Schemes for 1 < k = 5.
K Bj®) Bi(L)
1 1
1 t— 2 -
2 2
1 1
_t2 —
2 2
3 2 1
2 ——f2 + —t3 -
12t 12 12
12 4 8
—t — — 3 i
12 12 12
3., 2, 5
12 12 12
2 1 1
__t2 _— —t4 -
3 24 24 24
_Etz + _4_t3 —t4 _i
24 24 24 24
_2_4_‘._t £t2 —_ it?ﬁ — é.. 4 Q
24 24 24 24 24
4 4 1 9
3 —t2 + —3 + —t4 i
2t Tt Tt 2
30 10 15 6 19
4 0 — 2 — P A ettt -
720 720 720 720 720
1 180, 40 90, 24 106
720 720 720 720 720
5 40, , 60, 180, 36, _264
720 720 720 720 720
720 300 200 150 24 646
3 —t ._t2 — _t3 —_ 4 . —_ 5 —_—
720 720 720 720 720 720
A 90, , 110, 45 . 6 251
720 720 720 720 720
36 20 15 12 2 27
5 0 12 + t* — 4 — 5 - 6 —
1440 1440 1440 1440 1440t 1440
240 120 105 72 10 173
1 _ @2 — 3 4 4 s t6 —_
1440 1440 1440 1440 1440 1440
720 280 330 168 20 482
2 @2+ 3 - 4 _ s — 6 oe
1440 1440 1440 1440 1440 1440
1440 80 510 192 20 798
3 — 12 — 3 4+ 5 4 6 —
1440 1440 1440 1440 1440 1440
1440 780 300 375 108 10 1427
4 t+ t2 — B — t* — v - t6 =
1440 1440 1440 1440 1440 1440 1440
144 200 105 24 2 475
5 2 + t+ t4 + t> + t6 —
1440 1440 1440 1440 1440 1440

s =t + k — 1. We then replace the integrand f(x, y) by the
interpolating polynomial (1.3). The schemes are generated after
truncating (1.3) to obtain polynomials of differing degrees and
integrating. All the members of this class can compactly be ex-
pressed in the form

k
O = Yoy + h 2) Bi(Of,s; (1.4)

where t = [(x — x)/h] —k + 1, t# 0, x, = X < x,,,, §() is
the continuous form and B,(t) are provided for 1 = k = 5 (Table

1).

THE BLOCK ADAMS-MOULTON METHODS

We can obtain enough finite difference-(FD) equations from
the evaluation of § at points different from the interpolation
points used in the construction of § for the integration of a non-
stiff problem of the form (1.1). We evaluate (1.4) at the points

t=—-k-1,-k-2),..., 11

to obtain k multiple discrete formulas which are all consistent
and of close accuracies. We do not evaluate § given by (1.4) at
X = Xpur-; (t = 0), because it is the only interpolation point used
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TABLE 2. Absolute Errors of Methods for Example 1.
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y;-component

y,-component

X Standard AMM! Block CAMM? Standard AMM Block CAMM
0.00 0.00 000 0.00 “ 0.00
0.10 0.00° 4.87 X 106 0.00 4.42 X 10-5
0.20 4,87 X 1076 0.54 X 10-¢ 4.44 X 10-3 0.48 X 10-5
0.30 10.80 X 10-¢ 6.55 X 106 9.90 X 103 6.05 X 10-3
0.40 17.40 X 10-¢ 1.33 X 10-¢ 16.50 X 10-3 1.19 X 103
0.50 25.90 X 10-¢ 8.73 X 10°¢ 24.50 X 105 8.20 X 105
0.60 35.90 X 10-¢ 243 X 10°¢ 34.00 X 103 2.20 X 10-3
0.70 47.80 X 10-¢ 11.60 X 10-¢ 4540 X 103 11.00 X 10-3
0.80 61.70 X 10-¢ 3.97 X 10-¢ 58.90 X 103 3.63 X 103
0.90 78.10 X 10-¢ 15.20 x 10-¢ 74.80 X 103 147 X 10-3
1.00 97.30 X 106 6.05 X 106 93.40 X 105 4,15 X 10-3

! Adams-Moulton Method
2 Continuous Adams-Moulton Method
3 The theoretical solution is used as the starting value for y;.

in (1.4). From (1.4), we obtain as an approximation to y,;, i =
0,1,...,k

Yo =yt=i—(k—1), i=01,..., k-2, k=2
(1.5)
Foske = y(t = 1) (1.6)

As an illustration, we list the members of (1.5) and (1.6) for the
case k = 2. From the continuous formula (1.4), we get

h
YO = Yoy + E[(2t3 = 3)f, + (-4 + 120f,,,

+ (2t3 + 3t2)f,,,] (1.7)
If t = 1, —1 we obtain respectively from (1.7)
h
S’n+2 = )_/(t = l) = }_]n+l + E[an+2 + 8fn+1 - fn] (18)
- - . h
=3¢ =1 = 90 + S50, + 8 —£1  (1.9)

12

where (1.8) and (1.9) are solved simultaneously using the single
block matrix equation to yield the results given as numerical
examples.

THE SINGLE BLOCK MATRIX EQUATION

We can assemble all contributions from each block into a
single larger block matrix equation for the solution of (1.1). To
this end, we let 7 = [N/k]}, (7 > O denote the positive integer part

for N/k and write
N=7k +1, 1 =r <k

The multiple finite difference formulas are simultaneously ap-
plied over the first T successive blocks 7, ..., 7,_, of the form

0 { X Xigerds + - s Xiske1> Xiaad b 1=0,...,7— L

In each block m, we seek a discrete solution {y,, ...,

Ju+) simultaneously over successive steps where ¥, is known,
presumably from the previous block, with y(a) = y,. Then, the
T + D)st block which is the last block, is given by m: = {[x,,
Xasrls -+ -5 [Xn-1, Xy])}, Where @, involves r successive steps.
Varying the values of k in the continuous form formula § where
, involves r successive steps. Varying the values of k in the
continuous form formula ¥ for a constant value of h on the same
mesh, leads to variable order multistep finite difference methods.
The additional effort involved in the use of higher order methods
is with the increased number of function evaluations in the matrix
to be solved. For k = 1, 2, . .. the size of the matrix to be solved
remains the same. The process provides §,, ..., ¥, as well as
¥x and so it is a self-starting method. For linear problems, we
can solve the matrix equation directly from the start with Gauss-
ian elimination using partial pivoting, while for non-linear prob-
lems, we use a modified Newton-Raphson iteration. This can be
written in the form

LF —yH = -FF™H

where F has N components, J, is the Jacobian of F evaluated at
'~ and v is an integer.

In all cases the set of linear equations or Jacobian has an
almost block diagonal form.

NUMERICAL EXAMPLES

Example 1. (Nonstiff initial value problem)
y1(0) = 1,
¥2(0) =5

The theoretical solutions y,(x) = e* and y,(x) = (5 + X)e* are
given here to compare with the accuracy of the numerical solu-
tions in (Table 2).

Here the standard Adams-Moulton Method of order three is
compared with the block Continuous Adams Moulton Method of
order three. From Table 2 the use of the Continuous Adams-
Moulton Method in block form should be preferable to the stan-

yi' =Y 0=x=1

2 =y, t e,
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TABLE 3. Absolute errors of Continuous Adams-Moulton Method for order 2 and 3 for y, and y, components, h = 0.1, and
N = 10. ¢
y,-component y,-component
X CAMM! of order 2 CAMM of order 3 CAMM of order,2 CAMM of order 3
0.00 0.00 0.00 0.00 0.00
0.10 0.82 x 10~ 0.64 X 10-¢ 0.08 X 10~ 4.11 X 10-¢
0.20 1.63 X 104 0.44 X 10°¢ 0.33 X 10~ 0.09 X 10-¢
0.30 2.38 X 10~ 1.86 X 10-° 0.74 X 104 3.77 X 10-¢
0.40 3.07 X 10~ 8.17 X 10-¢ 1.30 X 10 0.35 X 108
0.50 3.65 X 10~ 2,96 X 10°¢ 1.99 X 104 3.11 X 10-¢
0.60 4.12 X 1074 1.10 X 10-¢ 2.82 X 10~ 0.75 X 10-¢
0.70 4.46 X 1074 3.86 X 10-¢ 3.75 X 104 2.18 X 10-¢
0.80 4.64 X 107 1.24 X 10°¢ 4,77 X 10~ 1.27 X 10-¢
0.90 4.66 X 10~ 4.49 X 106 5.86 X 10~ 1.02 X 10-°
1.00 4.50 X 10~ 1.20 X 108 7.00 X 10~ 1.87 X 106

I Continuous Adams-Moulton Method.

dard Adams-Moulton Method in the step-by-step form for more
accurate solution of nonstiff initial value problems.

Example 2. An initial value problem to demonstrate the self-
starting nature of the Continuous Adams-Moulton Method.

i’ = Yo y1(0) =0

¥2' = Y y2(0) = 1, x € [0, 1],

where the theoretical solutions are given by y,(x) = sin x and
y,(X) = cos x (Table 3).

Conclusion—We have presented a block method approach
based on simultaneous finite difference methods which are em-
bedded in a continuous k-step Adams-Moulton Method. The
method eliminates the limitations associated with the Standard
Adams-Moulton Method highlighted earlier and therefore leads
to the following improvements: Once y,, ..., yy are obtained,
then § provides, from these discrete values, dense output, using
(1.4). This is more economical than the discrete form. The meth-
od is self-starting and leads to superior uniform accuracy in a <
X = b. (Tables 2 and 3).
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