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ABSTRACT—Though infinitely many examples of nearly pseadocompact, non-pseudocompact spaces are
known to exist, their existence is known solely as a logical consequence of several technical theorems. A detailed
construction of a nearly pseudocompact, non-pseudocompact space has yet to appear in the literature. It is the

objective of this paper to offer just such a construction.

Nearly pseudocompact spaces were first introduced by Hen-
riksen and Rayburn (1980). To confirm that they had formulated
a valid generalization of pseudocompactness, they produced an
example of a topological space that was nearly pseudocompact
but not pseudocompact. Unfortunately, the example’s existence
and its nearly pseudocompactness were only asserted as a logical
consequence of several technical theorems. No detailed construc-
tion was offered. That detailed construction is precisely what is
offered here. By actually going through the construction of such
a space, the reader will perhaps gain a better idea of what a
nearly pseudocompact space looks like, and indeed be able to
see how many other such examples can be constructed. The paper
will end with a look at two theorems of Hausdorff which will
assure us that many such examples exist.

All of the examples to be presented here are linearly ordered
spaces. The reader in need of a review of order relations, cardi-
nals, and ordinals may find Willard (1970) helpful. It will be
necessary to cite a definition and theorem in which a distinction
is made between ‘‘measurable” and “non-measurable’ cardinals.
All of the cardinals used in this paper are of the ‘‘non-measur-
able’ variety, thereby making the distinction moot. The reader
who wishes to look into this distinction more deeply might refer
to Gillman and Jerison (1960).

Certain concepts connected with linearly ordered spaces are
worth reviewing. Two elements x and y of the linearly ordered
space X are called consecutive, if there exists no element z of X
with x < z < y. We say that a linearly ordered set is dense if no
two elements are consecutive. A useful way of constructing new
linearly ordered sets from two existing linearly ordered sets A
and B is by simple concatenation. We denote this new set A +
B, and agree thatif x€e Aand ye B, thenx <yinA + B. If X
is a linearly ordered set we let X* denote the same set with the
inverse order.

EXAMPLE 1. w, + o, and w; + 1 + oF are linearly ordered
spaces.

A cut of X is any pair (A, B) of subsets of a linearly ordered
set X such that A U B = X, and whenever x € A and y € B then
x < y. If A has no largest element and B has no smallest element,
the cut is called a gap. If (A, B) is a cut and A or B is empty, it
is a left- or right-end gap, respectively. It will be useful to think
of gaps as being “‘virtual” elements, i.e. an element x such that
a < x < b for every a € A and every b € B.

EXAMPLE 2. If X = o, + o}, then (0,, of) is a cut of X, and in
particular, a gap of X. On the other hand, no interior cut of ¥ =
w; + 1 + wf yields a gap.

If X is a linearly ordered set with at least two elements, then
the set of all intervals of X form a basis for a topology on X.
Every linearly ordered topological space is known to be heredi-
tarily normal (Porter and Woods, 1988).

Recall that a set Z is called a zero-set of X if and only if Z
= f<(0) for some continuous function f on X. A set is called a
cozero-set if it is the complement of a zero-set. A topological
space X is called psendocompact if and only if every continuous
function on X is bounded, and X is called realcompact if and only
if it is homeomorphic to a closed subset of a product of real
lines. Perhaps less familiar to a reader with a background in
topology are the following useful notions.

DEFINITION 1. Let X be normal. A set A is said to be relatively
pseudocompact in X if and only if every continuous function of
X is bounded on A. A set A is said to be relatively realcompact
in X if and only if it is a subset of a closed realcompact subset
of X.

Though the normality of X is not strictly speaking necessary
to define the concepts of relatively real- and relatively pseudo-
compactness, a more general definition of relatively realcom-
pactness would require a distracting review of the Hewitt-Nach-
bin realcompactification vX (see Schommer, 1993 for a general
definition of relative realcompactness). Indeed, the classic defi-
nitions of nearly real- and nearly pseudocompact spaces rely on
the reader’s familiarity with vX as well as the Stone-Céch com-
pactification BX. Again, to avoid digressing into a review of these
constructions, the following statements (theorems in the litera-
ture) will be adopted as our definitions of these topological prop-
erties.

DEFINITION 2. X is nearly realcompact if and only if every rel-
atively pseudocompact cozero set is realcompact. X is nearly
pseudocompact if and only if every realcompact cozero set is
relatively pseudocompact.

Cozero-sets are known to inherit realcompactness (Gillman
and Jerison, 1960). Thus realcompact spaces are nearly realcom-
pact and pseudocompact spaces are nearly pseudocompact. Per-
haps less obvious without a discussion of BX and vX are the
following results:
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Theorem 1. The following statements are true.

1. A realcompact, pseudocompact space is compact (Gillman
and Jerison, 1960)

2. A nearly realcompact, pseudocompact space is compact
(Blair and Van Douwen, 1992)

3. A realcompact, nearly pseudocompact space is compact
(Henriksen and Reyburn, 1980)

In addition to being nearly pseudocompact and non-pseu-
docompact, the space we are about to construct will also prove
to be nearly realcompact; an interesting result given Theorem 1.

A NEARLY PSEUDOCOMPACT,
NON-PSEUDOCOMPACT SPACE

Let X be a linearly ordered space and let X* be the union of
X with all its gaps. Let x be an element of X*. x is called an o_-
limit of X* if w, is regular and « is the smallest ordinal for which
x is the limit of an increasing sequence {x. £ < w,} of elements
of X preceding x. Likewise, x is called an o}-limit of X* if w,
is regular and B is the smallest ordinal for which x is the limit
of a decreasing sequence {x;: £ < w,} of elements of X succeding
x. x is a two-sided limit if it is both an ,- and an w#-limit for
some « and f.
We now define the character of an element of X* in the
following manner:
L. For every two-sided limit element x € X*, we say x has char-
acter c,q if x is both an w,- and an o}-element.
2. If x is the first element of X* and x is an ¥-limit, we assign
it the character cg,.
3. If x is the last element of X* and x is an w,-clement, we assign
it the character c,,.

An clement of X* has a symmetric character if it is of the
form c,, for some a.

EXAMPLE 3. We now proceed with the main construction of this
paper. To produce a nearly pseudocompact space that is not pseu-
docompact, we must construct a linearly ordered space in which
every element is a two-sided limit of character ¢y, ¢, OF ¢, At
every stage of the construction we will create an element with
one of these three characters out of every element from the pre-
ceding stage which fails to be a two-sided limit.
Let
b=wy+t1l+taef+o+1+of+w+1+of
L | L ! | —

T T T
M N P

A=of + ¢+ wp
B=of +b+

Note that ¢ is gap free, and the only gaps of A and B are
end-gaps. Let ¢, = ¢. Between every pair of consecutive ele-
ments x, and x,., in sections M and N of ¢,, place a copy of A,
call it Ag,. In section P, if x, and x;,, are a pair of consecutive
elements with ®; =< x;, x,,, < o}, then place a copy of B between
them, say B, Otherwise, between every pair of consecutive el-
ements in P we place a copy of A. Let

U A

By= ) By and A, =
and set

b = Ay U By U &
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with the order implicit in our construction. (That is, if x and y
are two consecutive elements between which a copy of, say ‘A,
has been placed, then for every element a € A, x < g < y.) Note
that every element of ¢, which was originally a member of &by
now has character cgy, ¢, Or ¢,,, and therefore no longer has an
immediate predecessor or successor in ¢,.

Our next objective is to construct &,. Each of the copies of
A and B which were used to create two-sided limits in ¢, in turn
contains elements which must be made into two-sided limits. For
the copies of ¢ contained in the middle of these copies of A and
B, the construction of ¢, is identical to that of ¢,: the copy of ¢
is divided into three sections and additional copies of A and B
are inserted as before. Between pairs of consecutive elements not
belonging to the middle segment ¢ of A or B, we place new
copies of A. If A and B, are the respective collections of the
copies of A and B freshly inserted into ¢,, then

b, = A, UB, Ud¢

with, as in the case of ¢, the order implicit in our construction.
Likewise we construct recursively

d’n = An—l Y Bn—l 9] ¢n—l

Note that each element of ¢, previously in ¢,_, is either g, ¢},
or cp. Indeed, if an element of &, ; is already symmetric in
character, it is not affected by the construction since it has no
immediate predecessor or successor, and thus its character is pre-
served in the next step; if an element of ¢,_, is not symmetric,
then this is precisely what the construction in the n® step reme-
dies. Furthermore each ¢, is free of gaps since ¢ and the interiors
of A and B are gap-free.
Finally let

Note that each element of X is either cy, ¢y, OF ¢y If x is an
element of X, then x is contained in some ¢,. Either x is carried
over from &,_,, in which case it is now, by construction, a sym-
metric element, or it will become a symmetric element in the set
b1, and its character will be preserved in every successive stage
of the construction.

As far as gaps are concerned, since X is the countable union
of ¢,’s, and since each of these is gap-free, any gaps of X have
character cy,. Thus the set X*, the union of X with all its gaps,
is a dense linearly ordered set in which every element is of char-
acter cg, €13, OF cyp. Furthermore, by construction, X* is dense
with elements of each character.

X* is not quite the example sought. If all of the ¢y, and c,,
elements of the set X* constructed above are deleted, the result
is a linearly ordered set with only c¢,, elements, all of whose gaps
are either ¢y, or cy,. This is the final example and will be referred
to as 7. It remains to show that % has the topological properties
we desire.

Recall that p is a P-point of X if and only if every G;-set
containing p is a neighborhood of p, and that X is a P-space if
and only if all of its points are P-points.

Proposition 2. Let X be a linearly ordered space. A point p € X
with character c, is a P-point if and only if both o # 0 and 8
# 0 (Gillman and Henriksen, 1954).

Proof. Suppose p is a P-point of character c,, and assume with-
out loss of generality that « = 0. Since p is an o,-limit, let (x,)
be a sequence converging to p from the left. For each x,, let
U,, be an open set containing p that misses x,. Then N, U, is
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a G;-set containing p that misses every x,. Since every neigh-
borhood of p must contain infinitely many x,, it can’t be a neigh-
borhood.

Conversely, let N,.,, U, be a Gy-set containing p. We may
assume the U,’s are descending. For n € o, let x, € U, — U,,,.
Then (x,) is a sequence, which by hypothesis must not converge
to p (otherwise p would be an o, or wg-limit). Thus there is a
neighborhood G of p which misses every x,. Since our sequence
was arbitrary, G must be properly contained in every U,. There-
fore N U, is a neighborhood of p.

new

Corollary 3. A linearly ordered space X is a P-space if and only
if no element of X has character c, or cy,.

Lemma 4. Every P-space is nearly realcompact (Schommer,
1994).

NOTE 1. All the elements of our space # have character c,;. It
follows that # is a P-space and is thus nearly realcompact.

The nearly pseudocompactness of # will now follow easily
from established results, but additional definitions will be re-
quired. An increasing or decreasing sequence {%:}s<ua Of €lements
of X is called a Q-sequence if for every limit ordinal A < w,, the
limit of the sequence {x,}.., is a gap of X. A gap is called a left
(right) Q-gap if it is the limit of an increasing (decreasing) Q-
sequence, and a Q-gap if it is both a left and a right Q-gap. The
gap is a non-measurable Q-gap if the cardinalites of the Q-se-
quences that identify it as a Q-gap are non-measurable.

Lemma 5. Let X be a linearly ordered space. Then X is real-
compact if and only if every gap of X is a non-measurable Q-
gap (Gillman and Henriksen, 1954).

Lemma 6. X is nearly pseudocompact and nowhere locally com-
pact if and only if every relatively realcompact open set is empty
(Schommer, 1993).

NOTE 2. It now follows that % is nearly pseudocompact. To see
this, let U be any relatively realcompact open subset of #. By
construction, U contains a ¢y, gap, say w. Since no gap of X is
either an ;- or an wi-limit, no transfinite sequence converging
to w can be a Q-sequence. U, then, contains a non-Q-gap and so
every closed set containing U cannot be realcompact by Lemma
5. Therefore every relatively realcompact open subset is empty,
and # is nearly pseudocompact and nowhere locally compact by
Lemma 6. Finally note that since # nearly realcompact, it cannot
be pseudocompact (otherwise it would be compact as well).

TwWO THEOREMS OF HAUSDORFF

We could have simply appealed to two theorems of Haus-
dorff (1908), as did Gillman and Henriksen (1954), to claim the
existence of a linearly ordered set whose elements and gaps are
of sufficient character for a space to be nearly pseudocompact
but not pseudocompact. Of course a pure existence claim does
not provide insight into what such a space might look like. None-
theless the old theorems of Hausdorff (1908) are interesting, and
we might do well to present them here.

DEFINITION 3. Let U be the collection of element characters of
a linearly ordered set, and let V be its collection of gap charac-
ters. 'We say that two dense linearly ordered sets are members of
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the same species if they have the same sets U and V. A species
is denoted as an ordered pair (U, V). Furthermore let W = U U
V be the union of all element and gap characters. All species
with the same set W are said to belong to the same genus. We
denote the genus after its gap-free representative, namely (W, ).

EXAMPLE 4. Our proto-example X+ has species (cyCiiCa, 8). H
has species (c;;,Coc2). Both of these linearly ordered set belong
to the same genus.

DEFINITION 4. A linearly ordered set X is called irreducible if
every open interval of X has the species of X.

Theorem 7. Let X be a dense irreducible linearly ordered set of
species (W, o). Then there exist dense irreducible linearly or-
dered sets of every species in the genus (W, ¢) (Hausdorff, 1908).

DEFINITION 5. A set of characters W is called complete if there

exist ordinals k and A such that:

1. For every o < «, there exists a B < \ such that c,; € W;

2. For every § < A, there exists an o < k such that c,; € W;

3. W contains at least one symmetric element c,, where o <
min(k, A).

Theorem 8. If W is a complete character set, then there exists
a dense irreducible linearly ordered set with species (W, @)
(Hausdorff, 1908).

NOTE 3. With k = N = 3, the character set W = {cyc,1C5} can
be seen to be complete, and so by Theorem 7, a dense linearly
ordered set of species (cyc; ¢, @) exists. It now follows from
Theorem 8 that a dense irreducible linearly ordered set of species
(cy1, CooCrn) EXIsSts.

Hausdorff’s proof of Theorem 8 is quite long, but has the
advantage of being constructive. In fact, though Hausdorff did
things a bit differently, his proof has motivated the construction
of our example #. It is clear then by Theorems 7 and 8, that
there exist examples of nearly pseudocompact, non-pseudocom-
pact spaces of every regular cardinality =o,.
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