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ENHANCED SEPARATION OF CRACKLES AND SQUAWKS FROM VESICULAR SOUNDS
USING NONLINEAR FILTERING WITH THIRD-ORDER STATISTICS
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ABSTRACT—The separation of pathological discontinuous adventitious sounds (DAS) from vesicular sounds
(VS) is of great importance in the analysis of lung sounds, since they are related to certain pulmonary pathologies.
An automated way of revealing the diagnostic character of DAS by isolating them from VS, based on their nonsta-
tionarity, is presented in this paper. A combination of nonlinear filtering with third-order statistics is implemented,
resulting in a modification of the nonlinear digital STationary-NonSTationary (ST-NST) filter, proposed by Arakawa
et al. (1986), for improving its performance in noisy environments. The use of third-order statistics in estimating the
AR-model’s order and coefficients provides more reliable estimates of the stationary part of the input signal. The
implementation of this modified ST-NST filter (mST-NST) in fine crackles, coarse crackles and squawks was ex-
amined. Our results indicate that a reliable and accurate separation of these adventitious sounds from vesicular
sounds can be achieved, even in the presence of additive Gaussian noise.

Pulmonary diagnosis is often based on the analysis of acous-
tical pulmonary signals, since the generated acoustical energy,
produced by air flow during inspiration and expiration, is highly
correlated with pulmonary dysfunction. Pulmonary dysfunction
is caused by anatomical or physiological changes in the pulmo-
nary system and is characterized by changes in the acoustical
properties of the various parts or organs involved (Cohen, 1990).
Thus, when narrowing of a portion of the tracheobronchial tree
occurs, turbulent flow may cause the generation of specific
acoustical noise, i.e. adventitious sounds.

Adventitious sounds are divided into two major classes: con-
tinuous and discontinuous sounds (Loudon et al., 1984), and are
only heard in pathological cases, indicating an underlying phys-
iological malfunction. The first class contains wheezes and rhon-
chi, characterized by a relatively long duration (250 ms), and a
sharp peak in the power spectral density function in the range of
400 Hz (wheezes) or in the range of 200 Hz or less (thonchi).
The second class contains crackles and squawks, characterized
mainly by their time domain features such as a relatively short
duration (20 ms), the initial deflection width (IDW) and the two
cycle duration (2CD).

Crackles are discrete, nonmusical sounds, which, when they
appeat, behave as a nonstationary explosive noise superimposed
on breath sounds. Their only useful categorization is between fine
and coarse crackles, with IDW = 0.90 ms; 2CD = 6.0 ms and
IDW = 1.25 ms; 2CD = 9.50 ms (Cohen, 1990), respectively.
Fine crackles (or Velcro® sounds) are exclusively inspiratory
events which tend to occur in mid-to-late inspiration and repeat
in similar patterns over subsequent breaths. They have been cred-
ibly established to result from the explosive reopening of small
airways that had closed during the previous expiration. They are
connected either to congestive heart failure or to pulmonary fi-
brotic diseases such as asbestosis and idiopathic interstitial fibro-
sis. Coarse crackles are found in early inspiration and occasion-
ally in expiration as well. They are of a ““popping” quality (not

Velcro®-like) and tend to be less reproducible from breath to
breath. Furthermore, they apparently arise from fluid in small
airways; can change pattern or clear after coughing, implying a
transient character in their production mechanism; and are related
with chronic bronchitis. Squawks are a combination of wheezes
and crackles; although they appear as short inspiratory wheezes,
they are heard in association with fine crackles (in fact, they may
be initiated with a crackle). They are related to allergic alveolitis
and interstitial fibrosis and are caused by the explosive opening
and fluttering of the unstable airway which causes the short
wheeze (Kraman, 1993).

From the aforementioned description of the discontinuous
adventitious lung sounds it is evident their separation from ve-
sicular sounds could reveal significant information, since the
structure of the DAS isolates its diagnostic character. In order to
achieve automated separatjon, their nonstationarity must be taken
into account. Consequently, the use of highpass filtering fails to
separate the nonstationary sounds, destroying the waveforms.
Furthermore, level slicer can not overcome the small amplitude
of fine crackles. Application of time-expanded waveform analy-
sis in crackle time domain analysis (Loudon et al., 1984; Murphy
et al., 1977) results in separation; however, it is time consuming
with large interobserver variability. In the case of fine crackles,
nonlinear processing proved to overcome the aforementioned
problems, resulting in objective and accurate results (Ono et al.,
1989).

The extension of nonlinear filtering by means of higher-order
statistics results in an enhanced separation of all discontinuous
adventitious sounds from vesicular ones, since AR-modeling
based on third-order statistics provides more reliable estimations
of the predicted signal. In this paper, the implementation of a
nonlinear filter based on third-order statistics, in separation of
crackles (fine & coarse) and squawks (nonstationary waves) from
vesicular sounds (stationary waves) is presented. Its performance
is evaluated through experimental results, which prove the estab-
lishment of an efficient and objective method.
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METHOD

In this section, the description of the proposed nonlinear fil-
ter (mST-NST) is presented. Our work builds on the ST-NST
filter proposed by Arakawa et al. (1986). In our case, the predic-
tion filter performs autoregressive prediction based on third-order
statistics (AR-TOS). The equation describing the autoregressive
model is:

14
Yn + Zl aiy"—i = Wn’ ao = 1’ (1)

where y, represents a p” order AR process of N samples (n =
0,.. . ,N—1), g, are the coefficients of the AR-model, and w, are
ii.d., non-Gaussian, third-order stationary, zero-mean, with
E{w,’} = B0 and y, independent of w, for n < [. Since w, is
third-order stationary, y, is also third-order stationary, assuming
it is a stable AR model. For the model of equation (1) we then
have (Nikias et al., 1993): )

P
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where, R(T,, T,) is the third order moment or cumulant sequence
of the AR process and 8(t;, 7,) is the 2-d unit impulse function.
If 7, and T, are in the range of 7, = 0, 1,.. ., pand 7, = 0, 1,. . .,
p, respectively, we find the g; coefficients with the Optimized AR
Method (OARM), proposed by An et al. (1990), using all third-
order cumulants of the pxp plane (and not only along the line T,
= 1,). This method uses third-order statistics to formulate an
overdetermined system of equations for g; and B with a least
squares solution. The calculation of AR model’s order p is re-
duced to a rank determination problem. According to Giannakis
et al. (1990), the rank of a matrix C,, defined as

-R(l’ _ﬁ) R(ﬁ» "17)
R(L, 0) R(p, 0)
C.= : [6(p + Dxpl, (3)
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formed by exact third-order cumulants, is equal to p, even when
only p, the upper bound of p, is known. The rank of C, is p, and
equals the maximum number of nonzero singular values of C..
In practice, all the singular values of the matrix €, (formed after
replacing the third-order statistics with their estimates) will be
nonzero. A subjective rule to select the “effective” AR order p
is to find the largest drop among two successive normalized sin-
gular values of C,. The use of this method is more reliable than
applying the SVD approach to a similar matrix containing the
sampled autocorrelation estimations, when additive colored
Gaussian noise is present (Giannakis et al., 1990).

The most profound motivations behind the use of third-order
statistics in the estimation of a; are (Proakis et al., 1992): i) Sup-
pression of Gaussian noise since third-order statistics of Gaussian
signals are identically zero, and ii) preservation of the true phase
character of the signal since third-order statistics do not suppress
the phase information of the signal, as the second-order statistics
(autocorrelation) do. Hence, when the analysis waveform consists
of a non-Gaussian signal in additive Gaussian noise, the param-
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FIG. 1. (a) Schematic diagram of the modified ST-NST sep-
arating filter (mST-NST). AR-TOS is the AR-model based on
Third-Order Statistics. (b) Definition of nonlinear function F.

eter estimation of the original signal using third-order statistics
takes place in a high signal-to-noise ratio (SNR) domain. Fur-
thermore, the parametric presentation of the process is more ac-
curate and reliable (Nikias et al., 1993).

Let the input signal x, be a summation of two types of sig-
nals: the stationary signal, that can be expressed by an autore-
gressive model, and the nonstationary signal, composed of ran-
dom impulsive waves, whose occurrence rate is low (Ono et al.,,
1989). Under these circumstances we can separate nonstationary
from stationary signals using the filter depicted in Fig. 1(a).

According to Fig. 1(a), x, is the input, 2, is the nonstationary
output, and ¥, is the stationary output. The prediction filter based
on third-order statistics performs autoregressive prediction of the
stationary waves ¥, of the input signal x,, as follows:

P

yu = 2 aiyn‘i' (4)

i=1
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FIG. 2. (a) A time section of 0.41 se¢ of fine crackles re-
corded from a patient with pulmonary fibrosis. (b) The stationary
output of mST-NST filter (VS). (c) The nonstationary output of
mST-NST filter (DAS).

The prediction error e, for the input x, is obtained by sub-
tracting the predicted output from the input, i.e.:

€ = X, ~ ¥ &)

The e, is then processed by the nonlinear function F(*) for
determining u,, which is the part included in the stationary com-
ponent, as follows:

u, = F(e). (6)

According to the ST-NST nonlinear filter by Arakawa et al.
(1986), the nonlinear function F(*) is defined as in Fig. 1(b). The
value of the parameter « is determined so that the probability of
detection of nonstationary waves is given by a certain value v,
ie.

f px)dx =1 -1, @)
where, p(x) is the probability density function of the prediction
L etror of the original signal. In our case, we suppose that the
probability density function (pdf) of the prediction error of the
 original signal is the pdf of a zero-mean, non-Gaussian distri-
f bution. An exponential distribution with mean equal to 6, shifted
to left, was used. The delayed exponential pdf was selected in
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FIG. 3. (a) A time section of 0.25 sec of coarse crackles
recorded from a patient with chronic fibrosis. (b) The stationary
output of mST-NST filter (VS). (¢) The nonstationary output of
mST-NST filter (DAS).

order to obtain non zero third-order statistics (since it is non
symmetrical) and zero mean. Furthermore, from a physiologic
perspective, the exponential distribution is preferable for popu-
lations where the observations involve items whose status chang-
es over time. This fact resembles the nonstationary character of
DAS.

The nonstationary output 2, and the stationary output ¢, are
obtained as follows:

o=t u,and 2, = ¢, — u, ®

If —e < e, <, then the stationary output is the input signal
itself and the nonstationary component is zero, i.e., §, = x, and
2, = 0. If |e,] > ke, then the stationary output is the autoregres-
sively estimated value itself and the nonstationary output is the
whole prediction error, ie., §, = §, and 2, = e,. If —ke < e, <
—e and € < e, < ke, the input signal is processed as quasista-
tionary in the sense that a part of the prediction error is included
in the stationary output and the other is regarded as the nonsta-
tionary component, i.e., §, = §, —eand 2, = ¢, + €, 9, = §, +
€ and 2, = e, — ¢, respectively. In all cases, the input signal x,
is equal to the sum of §, and 2.
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IMPLEMENTATION

The method was implemented on a IBM-PC (Pentium/
120MHz) using the programming language ASYST 4.1 (Keithley
Instruments, Inc, Taunton, MA). Pre-classified signals, corre-
sponding to fine crackles (from pulmonary fibrosis), coarse
crackles (from chronic bronchitis), and squawks (from interstitial
fibrosis) were drawn from a lung sound data-base (Kraman,
1993). Nine cases were investigated (Table 1). After an antialias-
ing filter, the signals were digitized with a 12-Bit A/D converter
at a sampling rate of 2.5KHz. A section of 15s of every signal
was digitized and processed by the nonlinear filter. Successive
records of N = 512 or N = 1024 samples were divided into M
= 8 sections each, and the third-order statistics of each record
were estimated by averaging the cumulants of each section. Us-
ing equation 2, the B and g; coefficients were estimated, in order
to predict the stationary part of the input signal (per record). The
values of v, 6 and k were settled to be, in most cases, 0.04, 0.1
and 4, respectively, as a trade-off between not separating vesic-
ular sounds and separating crackles and squawks. The value of
order p was found to be equal to 2.

RESULTS AND DISCUSSION

Results obtained with the mST-NST filter on different kinds
of DAS (fine/coarse crackles & squawks) are presented in this
section. The processed records were selected so the main struc-
ture morphologies of the DAS would be clearly encountered.
Figures 2, 3 and 4 depict the experimental results of applying the
nonlinear filter of Fig. 1 to fine crackles, coarse crackles and
squawks, respectively. From Fig. 2 we can see the separation of
two repeated similar patterns of fine crackles from vesicular
sounds, including six fine crackles each (included in dotted
squares). The observed similarity results from the explosive re-
opening of small airways that had closed during the previous
expiration. The abnormal airway closure that precedes the
“crackling™ reopening is due to increased lung stiffness. From
this figure, the explosive nonstationary character of fine crackles,
along with their short time duration are evident, since they are
superimposed on stationary vesicular sounds with lower ampli-
tude.

In Fig. 3, the separation of seven coarse crackles from ve-
sicular sounds, with “popping” quality and tendency to be less
reproducible, is depicted. This observed randomness in crackles’
occurrence is due to the presence of fluid in the small airways.
Although this sequence of coarse crackles differs from the pre-
viously described fine crackles in both structure and shape, the
mST-NST filter still performs satisfactorily. This becomes clear
from Figs. 3 (b) & (c) where the true locations of the input coarse
crackles and their time duration and morphology are accurately
identified, while the shape characteristics of VS also are accu-
rately retained. Furthermore the separation of two isolated
squawks from vesicular sounds can be observed (Fig. 4). The
two main characteristics of a squawk, i.e., an underlying fine
crackle, followed by a short wheeze with an almost exponential
decay, are easily identified in the first squawk. These character-
istics are clearly reproduced in the nonstationary output of the
mST-NST filter depicted in Fig. 4(c). The pure vesicular sounds
are accurately reconstructed from the mST-NST filter stationary
output depicted in Fig. 4(b).

Apart from visual comparisons between the original DAS
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FIG. 4. (a) A time section of 0.41 sec of squawks recorded
from a patient with interstitial fibrosis. (b) The stationary output
of mST-NST filter (VS). (c) The nonstationary output of mST-
NST filter (DAS). (d) The nonstationary output of mST-NST fil-
ter (DAS) from noisy input [+GN(mean = 0, variance = 0.03)].

and those picked up by the mST-NST filter, a quantitative anal-
ysis of the performance of the mST-NST filter for each case was
performed by means of the rate of detectability, Dy,, defined as
follows:

Ng — Ng

Dy =11 -
R1 ( Ny

)- 100, )
where Ny is the number of visually recognized DAS by a phy-
sician (considered as the true number of DAS in the input signal),
and Nj is the number of estimated DAS using the mST-NST
filter. Analytical results of the above mentioned parameters are
presented in Table 1. These results indicate that the mST-NST
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TABLE 1. The performance of mST-NST filter vs ST-NST filter for different cases of DAS.
Additive Gaussian noise

DAS Noise-free case [mean = 0, variance = 0.03]
Cases type Diagnosis N M Ng Ng, N Dpi(%) Diy(%) N'g; N'g; D'pi(%) D'po(%)
C1 FC PF 1024 8 12 12 10 100 83.0 12 9 100 75.0
C2 FC PF 1024 8 7 7 6 100 85.7 7 5 100 714
C3 FC PF 1024 8 7 7 6 100 85.7 7 5 100 71.4
C4 CC CB 512 8 7 7 4 100 57.1 7 4 100 57.1
C5 CC CB 1024 8 8 8 6 100 75.0 8 5 100 62.5
C6 CC CB 1024 8 11 11 6 100 54.5 11 6 100 54.5
Cc7 SQ IF 1024 8 2 2 2 100 100 2 1 100 50.0
C8 SQ IF 1024 8 8 8 6 100 75.0 8 5 100 62.5
C9 SQ IF 1024 8 2 2 2 100 100 2 2 100 100

FC: Fine Crackles; CC

: Coarse Crackles; SQ: Squawks; PF: Pulmonary Fibrosis; CB: Chronic Bronchitis; IF: Interstitial Fibrosis.

Used values: p = 2, y = 0.04, 6 = 0.1, k = 4.0 (mST-NST filter); p = 15, vy = 0.04, k = 2.0 (ST-NST filter; Arakawa et al., 1986).

filter performs very well, since all DAS were efficiently detected.
To quantitatively compare the mST-NST and ST-NST filters, the
ST-NST filter was implemented and applied to our database.
Therefore, a measure of the performance of the ST-NST filter
was defined as Dy, in a similar manner to the definition of Dy,
(equation (8)), as follows:

)- 100,

where Ng, is the number of estimated DAS using the ST-NST
filter. Results of DAS analysis with the ST-NST filter are pre-
sented in Table 1. Comparing these results to those obtained with
the mST-NST filter, it is evident that the mST-NST filter performs
better than the ST-NST filter, in all cases of each type of DAS.

To examine the contribution of third-order statistics in the
accurate separation of the stationary and nonstationary part, we
applied the nonlinear filtering in input signals with additive col-
ored Gaussian Noise with zero mean and variance equal to 0.03.
The Ng,, Ng,, Dgy, and Dy, parameters were re-calculated for the
noisy inputs, resulting in the new values of N'g,, N'p,, D'y, and
D'y, parameters, respectively (Table 1). From Table 1 it is evident
that in the presence of additive Gaussian noise the performance
of the mST-NST filter remained unchanged, while that of the ST-
NST filter was deteriorated, since its rate of detectability, in most
cases, was reduced, due to the additive Gaussian noise. Addi-
tionally it was found that: i) the estimation of the order p was
not influenced by the Gaussian noise, and ii) the nonstationary
and stationary outputs of the mST-NST filter were almost iden-
tical to those derived from the noise-free case, demonstrating the
noise-robustness of the mST-NST filter. An example of these re-
sults, in the case of squawks, is depicted in Fig. 4(d).

The effect of the mST-NST filter on input breath sounds also
was tested by listening to its stationary outputs after Digital-to-
Analog (D/A) conversion (‘wav’ format archives). During this
evaluation procedure, the DAS were almost practically not heard,
confirming a good separation performance by the mST-NST filter.

Furthermore, from our experiments, it was clear that, when
the AR prediction of VS is performed by third-order statistics,
the estimated values of model’s order p are kept low enough (p
= 3), compared to Ono’s method (p = 15) (Ono et al., 1989).

NR_NEZ

Dy, = (1 - Ny (10)

Finally, in order to maintain the probability of detecting DAS
constant, to keep the stability of the filter, and to capture the
changes of VS among patients, sites and states of ventilation, the
F(*) function was set, and the order p and g, coefficients of the
AR-TOS model were calculated adaptively, at each record of the
input signal. In this way, this adaptive procedure updated the
mST-NST filter parameters every time a new record of the in-
coming signal was processed. A step by step methodology of the
mST-NST filter is summarized in Appendix 1.

A combination of nonlinear filtering with third-order statis-
tics was presented. This method, is a modification of the ST-NST
filter proposed by Arakawa et al. (1986), and differs in the way
the stationary part of the signal is modeled by an AR-model. The
use of third-order statistics in estimating AR-model’s order and
its coefficients, lead to more reliable prediction of the stationary
part of the signal, improving the overall performance of the ST
NST filter.

Finally, experiments have shown that this modified nonlinear
filter can separate fine crackles, coarse crackles and squawks,
even when they are contaminated by Gaussian noise or by noise
with symmetrical pdf.
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APPENDIX 1

In this appendix, a step by step methodology of mST-NST
filter is illustrated.
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Step 1. Initialize: N (number of samples per record), x, (in-
put signal, n = 1,.. ,N), L. (number of records), M (nur’nbg:r of
sections per record).
Step 2: Fori = 1,2,..., L.
® Set the values of v, 0, k (parameters of function F(%)), P (es-
timation of the upper bound of AR-TOS model order).

® Find the value of parameter € using ¢quation (7).

® Constrict the function F(*) using Fig. 1(b) and the values of
¥, 6, k and €.

® Find the third-order statistics of éach section M of X,, and
average them to get the final estimation of R(r,,7,).

® Estimate the AR-TOS mode] order p using the method pro-
posed by Giannakis et al. (1990).

® Find the a; coefficients and B of AR-TOS model using the
estimated value of p, and equations (1) & (2) (An et al., 1990).

® Calculate the prediction error e, using equations (4) & (5).

Calculate the function u, using the equation (6).

® Calculate the nonstationary output 2, and the stationary output
9. using equation (8) and the structure of Fig. 1(a).

Step 3: Next i,



