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ABSTRACT--Mathematical formulations are given for treatment of ellipsometric data of thin films with continuous
distribution of index of refraction. A quadratic model and a Gaussian model, together with the computational procedures, are

presented.

Ellipsometry, which may be characterized as reflection polarimetry
or polarimetric spectroscopy, is the measurement of the effect of
reflection on the state of polarization of light. Such measurements may
be interpreted to yield the optical constants of the reflecting material or,
when the reflecting material is a film-covered substrate, the thickness
and optical constants of the film. In ellipsometric measurement of
surface films, the index of refraction and the extinction coefficient of the
film are also obtained.

Due to the difficulties in experimental arrangement and the com-
plexity in mathematical treatment, the surface films are usually treated
as a single-layer film with homogeneous distribution of the index of
refraction throughout its depth. Such a single-layer model is not a very
satisfactory representation of ion implanted surface films (Whichard et
al., 1988). It is the goal of the present paper to develop a multi-layer
formulation for ellipsometric measurement of thin films with continu-
ous distribution of index of refraction throughout its depth.

SINGLE-LAYER ELLIPSOMETRY

The principle of ellipsometric measurement of single-layer films is
available elsewhere (e.g., Heavens, 1955; Archer, 1968). A brief
account of basic ellipsometry is given here.

Referring to Fig. 1, an incident light beam is reflected from the
interface of two optical media having indices of refraction n, and n,,
respectively. The angle of incidence and the angle of refraction are b,
and ¢,, respectively. The amplitude of the electric vector component of
the incident beam in the plane of incidence is denoted by E,? whileE
denotes the component perpendicular to the plane of incidence. The
reflected components are denoted by E,,” and E,® and E,” and E*
denote the transmitted components. The subscript 12 indicates that the
amplitude is directly related to the incident beam from the medium 1
striking at the interface between the media 1 and 2. By solving the
Maxwell’s equations under the boundary conditions at the reflecting
interface, the following Fresnel reflection and transmission coefficients
for the two planes of polarizations can be obtained:
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Foran optically absorbing medium, the complex index of refraction
of the substrate,

n'=n-ik %)

is substituted for n, in equations (1) through (4). The extinction
coefficient, k, is related to the absorption coefficient o (in units of
cm?) by

k=oaM4x 6)

where A is the vacuum wavelength.

Figure 2 shows the reflection and transmission of a light beam by
a single-layer thin film having a thickness d,. Because there are two
interfaces, the beam will be reflected many times between the two
interfaces. In the following discussion, the superscripts p and s are
omitted unless otherwise stated, because the formulation is valid for
both polarizations. Assuming an unity amplitude and azero phase angle
for the incident beam, the resultant amplitude is given by (Heavens,
1955; Archer, 1968)
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FIG. 1. Reflection, refraction, and transmission of a light beam at
the interface of two media with the indices of refraction n, and n,.

where
a= exp[-(k, +in,)3 ]. ©)]
The absorption coefficient is k,, n, is the index of refraction,

8, = (2rnd /(A cos d,)), 10)
d, is the thickness of the thin film, and A is the light wavelength. The
resultant reflected and transmitted amplitudes are R , and T ,, respec-
tively; B and y are the complex phase angles. These two amplitudes and
angles are measurable. The Fresnel coefficients (r,, 1,,,t,,, and t ) are
determined according to equations (1) through (4). The Fresnel
coefficients are related to the experimentally measured parameters ¥
and A:

RPEs
¥ = arctan (1)
ReEP
A=pF-ps (12)
02P
= tan ¥ ExpliA] (13)

s
Py

where the superscript p denotes the parameters associated with the
electric vector component in the plane of incidence, while the super-
script s denotes that associated with the component perpendicular to the
plane of incidence.

MULTI-LAYER ELLIPSOMETRY

The reflection and refraction of a light beam by a multi-layer thin
film is illustrated in Fig. 3. The boldface arrows represent the resultant
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FIG. 2. Multiple reflection, refraction, and transmission of a light
beam by a single-layer thin film.

light beams of multiple reflection and refraction. For example, R,
represents the superposition of all the light beams being reflected and
refracted by the top i layers and finally coming out of the top surface. The
recursion formulae for multi-layer thin film can be obtained in much the
same way as equations (5) and (6) are derived:
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To,i+1 = (15)
Lopotin, o4,
= exP['iSH 1] (16)
8,,,=(360/M)d,, (n,, 2 -sin® ¢ )" degrees an

where p,, is the resultant reflection of the incident beam by the first i
layers of the thin film, while p, , is the resultant reflection of the beam
entering from the i + 1th layer back into the first i layers. The subscripts
of the rest of the symbols are likewise understood. The thickness and
the index of refraction of the i + 1th layer are denoted by d,, , and n, , ,
and ¢, is the angle of incidence in the ith layer. If the absorption is not
negligible, all 8, are complex numbers. Accordingly, the Fresnel
coefficients p,, in equation (13) should be replaced with p ,, , for multi-
layer films.

In principle, if the indices of refraction and the coefficients of
absorption are given for all the layers, the resultant Fresnel coefficients
can be computed according to the recursion formulae (14) through (17),
in which all ¢, are determined by Snell’s Law:

Sin ¢, n,
= — (18)

Sing, n,
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FIG. 3. Multiple reflection, refraction, and transmission of a light
beam by a multi-layer thin film. Each of the thick arrow lines represents
a resultant beam due to multi-reflection and refraction.

These resultant Fresnel coefficients are used to determine the values of
Aand ‘P according to equations (11) through (13). The calculated A and
‘¥ are then compared to the experimentally measured values. Regres-
sion procedures can be devised to determine the indices of refraction of
each layer so that the calculated A and ¥ best fit the measured values.

However, there are practical difficulties with this method. The
indices (and possibly the coefficients of absorption) of each layer and the
thickness of the thin film are not known. There aren+ 1 (2n+ 1 if the
absorption is not negligible) unknowns. It will demand at least (n + 1)2
sets of independent measurements of A and ¥ to determine these
unknowns with reasonable confidence. For a four-layer model, there are
at least five unknowns, and at least 25 independent sets of A and ¥ are
needed. The independent values of A and ‘¥ can be obtained by varying
the incidence angle and the wavelength of the light (and hence changing
all 3). There is limited freedom for varying the incidence angle as it is
usually set near the Brewster’s angle for better sensitivity and accuracy.
The number of compact He-Ne lasers of different frequencies is also
limited. It may be managed to obtain some 20 data sets by making
different combinations of the incidence angles and the laser frequencies.
Any model involving more than four layers will demand continuously
tunable lasers which are much more complex in operation and mainte-
nance, much more expensive and unwieldy. The quadratic model and
the Gaussian model presented in this paper enable a yield of continuous
distribution of the index of refraction of a thin film, while requiring
about 20 data points of A and P

QUADRATIC DISTRIBUTION MODEL

In many applications, the thin films are usually formed by adding
an impurity ingredient into the substrate by ion implantation. The
density of the impurity is a function of the depth from the surface and so
is the change of index of refraction. Figure4 shows a typical distribution
of concentration of implanted ions (Whichard et al., 1988). The index
of refraction in the jon-implanted region increases by <6%. The well-
behaved distribution function and the small change in the index of
refraction justify a quadratic approximation of the index of refraction:

FIG. 4. Typical distribution of ion concentration in the surface
region of a silica sample modified by ion implantation (from Whichard
et al., 1988).

n(x) =n,+n, - a(x-x (Jx-x] <& (19)
n(x)=n, otherwise (20)
&= sqrt(n, /a) 21)

where n, is the known index of refraction of the substrate and X, is the
average depth of ion implantation. The half-width of the implanted thin
film is &. The constants a, n,, and X, are to be determined by fitting
equation (19) into the experimental data of A and ¥ as outlined in for
multi-layer ellipsometry. The three unknowns can be reasonably well
determined by about 10 data points. Often times, & and X, can be
determined by other independent methods such as ion-backscattering-
depth-profile technique. In that case, n, can be expressed in terms of a;
n, = ag (22)
We then have only one free parameter, a, to be determined.

When the surface is heavily implanted so that the index of
refraction changed significantly, equation (19) may be modified to
include a fourth-order term:

n(X) =0, + 0, a(x - X, + b(x - X, (x-xl<0) @3
n(x)=n, otherwise 24)
€ = sqrt[a/(2b) - sqrt(a’ - 4n,b)/(2b)]. 25)

The contribution of the fourth-order term is expected to be much smaller
than that of the second-order term. Attention has to be paid in numerical
calculations so that the argument of the square-root function in equation
(25) is always positive.

If the density distribution of implanted ions is not a symmetric
function about x, equation (19) may be modified by including a linear
term and a third-power term:
n(x)=n,+n, +b(x-x,)-a(x-x}+c(x-x )

@€, <kx-x]<C) (26)

where the two limits §, and §, are the positions where the index of
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refraction n(x) reduces to n, and can be determined numerically by a
computer program.

GAUSSIAN DISTRIBUTION MODEL

Due to statistical nature of the motion of the ions, the implanted
ions usually distribute about the average depth according to Gaussian
distribution (Whichard et al., 1988). In that case, the index of refraction
can be expressed as a Gaussian function of the depth:
n(x) = ny +n, exp[-(x - x,)/c?] @27
where n, and ¢ are the parameters to be determined by fitting the
ellipsometric data. If ¢ is determined independently from ion-backscat-
tering-depth-profile, then only a single parameter, n,, needs to be
determined. The modification of index of refraction should be well
determined with about 12 data points if the Gaussian model does apply.

In case the absorption coefficient is not negligible, the extinction
coefficient, k, needs to be taken consideration. It will involve more free
parameters and, therefore, demand more data points. However, the
computational procedure should be essentially the same. The modifica-
tion of the absorption coefficient is usually a minor factor, and a
quadratic model should be sufficient to represent modification of the
absorption coefficient.

COMPUTATIONAL PROCEDURE

To determine the unknown parameters involved in the models
presented, a regretion procedure is deviced and described. Adoption of
either the quadratic or the Gaussian model is assumed. Itis assumed that
the values of n, are known. The procedure is: 1) divide the film into a
number of layers with equal thickness Ax; the depth of the ith layer is x;;
2) set the best-guessed initial values for the parameters n, a, and x, in
the quadratic model, orn,, o, and x, in the Gaussian model, calculate the
limit & accordingly, 3) calculate the indices of refraction for each layer
according to equation (19) or (27); 4) for each set of angle of incidence,
¢jo and l.,. atwhich A. and ¥ are measured, calculate the angles, ¢ji, ateach
layer according to Snell’s f.,aw, equation (18); the subscript j denotes the
jth measurement of A and ‘¥, at the incidence angle ¢j0 and the
wavelength A; 5) calculate 8, and o for each layer according to
equations (16) and (17), 6) calculate p,, 7, throughp, . ,andz, . by
making use of the recursion formulae equations (14) and (15) for the jth
measurement; 7) calculate AJ and 'W. according to equations (11) through
(13), replacing p,, in equation (13’) with p ;. ,; 8) these theoretically
calculated A and ¥, are to be compared to the experimentally measured
values A, and ‘I’je, and an error function I is constructed as the criterium
of data fitting;

() =2

r=—Z {—)+ - Z{— 28
mj=l lIIje m j=| e ( )
with  A¥,='¥-¥, 9)
and  AA=A-A (30)

in equation (28), m is the number of data points; 9) slightly change the
parameters of n, x,, and a (or ©) in step 2 and repeat steps (3) through
(8) in a manner of trial-and-error, to reduce I'; and 10) repeat the steps
1 through 9 until I reaches the minimum.
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CONCLUSION

A multi-layer model is necessary to represent a thin film with finite
thickness and varying index of refraction along its depth. An indepen-
dentmulti-layer model, however, requires alarge number ofindependant
data points that practically limit the number of layers manageable. This
difficulty can be circumvented by adopting continuous distribution
models that do not involve as many fitting parameters, and, therefore, do
not require as many data points. The quadratic and Gaussian distribu-
tion models presented in this paper are adequate for many thin films with
continuous distribution of index of refraction.
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