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ABSTRACT--Three Fibonacci forms are obtained as recursion relations among the integer solutions to the Pell equation,

x2-Dy?=
- The second form is Z,,,= 2pz_, -2,

forms are obtained in the limit of large n: x

n+ 1 n

1, which has x, = p and y q as the first nontrivial solution. The first form is x

n+l=pxn+qun a“dylnl:qxn-*.pyn'

, where z can be x ory. The third form involves products: x x =Dyy +p. Asymptotic
/x =y . [y =p+qD" and x /y,=D". Relationships between the solutions are

found for D= EF? and D= E. Recursion sequences are found for mod_(x ) and for mod |(0,/Q) and depend only on mod,_p. The
cases of D =3, 12, and 27 are presented in more detail as examples.

A question in the ORNL Review (Uppuluri, 1988) motivated this
work: ““For any set of seven consecutive integers, the mean and the
standard deviation are also integers; find other sets of integers sharing
this property (Delany, 1989).”” Since any set of x consecutive integers,
for x even, will have a half-integer mean, only an odd number (x=2;+
1) of consecutive integers satisfies the integer mean requirement. The
standard deviation, y, of this sequence (N4,N-j+l, ., N-1,N,N+
1,..,N+j)is found from:

Y=21P 422+ L+ P25+ 1) =G+ 1)/3. Q)
Solving equation (1) for x =2j + 1 yields the ‘‘Pell equation®” for D =
12: x2-Dy?= 1; Table 1 shows the first 16 nontrivial (integer) solutions
to this equation. We further note that the starred values of x in Table 1
denote solutions, which, when multiplied by two, constitute the series
used byLehmer (1935),u, =v? -2, asatestfor primality of Mersenne’s
numbers.

Most books in number theory discuss the Pell equation and its
solutions. The general topic of linear recursions (discussed later) is also
well known; see Lidle and Nieferreiter (1986:chapter 6) for example.
Here, we discuss special case solutions, for which only general forms are
published. The Pell equation has the form x? - Dy? = 1, where X, y, and
D are integers; the integer solutions are (Beiler, 1964):

x, = [(p+ gDy + (p - qD'?y])/2 (2a)

= [(p + gD'?y' - (p -qD'?))/2D"". (2b)
Forall values of D, x= 1 and y =0 are trivial solutions; the first nontrivial
solution is x, = p and y, =q. When D is the square of an integer (D =
w?), the Pell equation takes the form x? - wly?=x*-u?=1 for x and u
both integers. It is well known that no nontrivial solutions exist in this
case, because two successive integers, m and m + 1, yield the smallest
difference 2m + 1 = 1) between integers squared, when m = 0.
Therefore, these values of D are omitted from further discussion.

Equations (2a) and (2b) are easily solved (Chrystal, 1964:480,
equation 6) for (p + qD'?)" and (p - gD'?)" as follows:

(p+qD"?y'=x, + D"y (3a)

(p-gD"?y =x -D%y_ (3b)
The first Fibonacci form is obtained by substituting equations (3a) and
(3b) into equations (2a) and (2b) for the (n + 1)st solution:

X,,, = [(p+aD"Xx, + D"y) + (p - D'*)(x, - D?y)]/2

=px,+qDy, (4a)

Y,., = [(@+aD")x, + D"y,) - (p - qD*x, - D"y )}/2D"*
=qX,* Py, (4b)

The advantage ‘of these recursions is that they can be easily programmed
on a computer or calculator to determine the solutions to the Pell
equation (see Tables 1-3, for example). Adler (1972) obtained equiva-
lent forms for D = 3. A second Fibonacci form is obtained by using the
(n+2)and (n+ 1) forms of equations (3a) and (3b) to eliminate the cross
terms, wherez=xory:

z,,, =202, + (D¢ -pY)z,=2pz, -2, ®)
A third Fibonacci relation is obtained by multiplying equation (4a) by x,
and subtracting equation (4b) times Dy, Using the Pell equation to
eliminate two terms, a product form is:

xnxn+l Dynynﬂ (6)
Several asymptotic forms can be obtained from equations (4a) and (4b).
By dividing the Pell equation by y,, in the limit of very large values of
n, the form is obviously:

lim x fy, =D'”. @)

n->oo
Dividing equation (4a) by x_and substituting from (7), a second form is
obtained:

limx ,

N-poo
By dividing equation (4b) by y, and substituting from (7), a third limit
is:

/X =p+qD\2

limy , /fy,=p+ qD'2, “
n—»oo
The last two asymptotic forms, in the limit of large values of n, can be

written in three different forms:

limx , /x =limy  /y =p+qD" (10a)
n—=y»o0 n-»oo
=p+(p’- 1) (10b)
= (1 + Dg?)"2 + qD™2, (10c)

The forms in equations (10b)and (10c) are obtained by substitution from
the first nontrivial solution of the Pell equation. Altematively, we note
that (p+ qD¥?)p - qD'*) =1 and|p - qD?| < 1, imply that the dominant
term for large n in equations (2a) - (2b) is|p + qD'?| > 1, thus giving
equation (10a) directly. These asymptotic limits are satisfied to >7
decimal places for n> 3.
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TABLE 1. First 16 nontrivial solutions to Pell equation (D = 12).
n xll yn
1 7* 2
2 97* 28
3 1351 390
4 18 817 " 5432
5 262 087 75 658
6 3650 401 1053 780
7 50 843527 14 677 262
8 708 158 977* 204 427 888
9 9 863 382 151 2847313170
10 137 379 191 137 39 657 956 492
11 1913 445 293 767 552364 077 718
12 26 650 854 921 601 7693 439 131 560
13 371 198 523 608 647 107 155 783 764 122
14 5170 128 475 599 457 1492 487 533 566 148
15 72010 600 134 783 751 20 787 669 686 161 950
16 1002 978 273 411 373 057* 289 534 888 072 701 152

*Denote solutions, which, when multiplied by two, constitute the series used by Lehmer (1935), u = u?, | - 2, as a test for primality of

Mersenne's numbers.

TABLE 2. First 33 non-trivial solutions to Pell equation (D = 3).

n Xn yn
1 2 1
2 7 4
3 26 15
4 97 56
5 362 209
6 1351 780
7 5042 2911
8 18 817 10 864
9 70 226 40 545
10 262 087 151 316
11 978 122 564 719
12 3650 401 2 107 560
13 13 623 482 7 865 521
14 50 843 527 29 354 524
15 189 750 626 109 552 575
16 708 158 977 408 855 776
17 2 642 885282 1525 870 529
18 9863 382 151 5694 626 340
19 36 810643 322 21252 634 831
20 137 379 191 137 79 315912 984
21 512 706 121 226 296 011 017 105
22 1913 445 293 767 1104 728 155 436
23 7141 075 053 842 4 122 901 604 639
24 26 650 854 921 601 15 386 878 263 120
25 99 462 344 632 562 57424 611 447 841
26 371 198 523 608 647 214 311 567 528 244
27 1 385 331 749 802 026 799 821 658 665 135
28 5170 128 475 599 457 2 984 975 067 1327296
29 19295 182 152 595 802 11 140 078 609 864 049
30 72 010 600 134 783 751 41 575 339 372 323 900
31 268 747 218 386 539 202 155 161 278 879 431 551
32 1002 978 273 411 373 057 579 069 776 145 402 304
33 3743 165 875 258 953 026 2161 117 825 702 177 665
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TABLE 3. First 11 nontrivial solutions to Pell equation (D = 27).
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=

X

n - Yo
1 26 5
2 1351 260
3 70 226 13 515
4 3650401 702 520
5 189 750 626 36 517 525
6 9863382 151 1898 208 780
7 512 706 121 226 98 670 339 035
8 26 650 854 921 601 5128 959 421 040
9 1385 331 749 802 026 266 607 219 555 045
10 72 010 600 134 783 751 13 858 446 457 441 300
11 3743 165 875 258 953 026 720 372 608 567 392 555

Study of Tables 1 to 3 reveals that the n-th Pell solution, (x , y, ) for
a given value of D = EF?, is related to the solution for D = E since the
Pell equation can be rewritten as:

x*-Dy?=x?-E(Fy)=1. an
The general relationship between solutions can be written as:

X, (D =E)Yx(D=EF?)=1 (12a)

YD =E)y(D=EF?)=F, (12b)

where m is the appropriate multiple, based on where the first nontrivial
solution for D = EF? occurs relative to D = E. For example, for D =27
= 3(3)?, the relationships are (see Table 3):

X, (D=3)x(D=27)=1 (13a)

Y, (D=3)y(D=27)=3. (13b)
The value of m = 3 occurs because the first nontrivial solution for D =
27is (p= 26, q =5), corresponds to the third solution (x, = 26, y,=15)
for D = 3 (Table 2). Recursion sequences are discussed next.

Table 4 lists the first nontrivial solutions to the Pell equation for
D <27. The higher order Pell solutions, (x_, y,) have a resursion in the
right-mostdigit (RMD)of both x andy, fora fixed value of D. Examples
of these recursions are shown in the two right columns of Table 4 and
are readily seen in Tables 1 to 3 for D-values of 3, 12, 27, respectively.

We note that the recursion for RMID(x ) is a function of the RMD
of X, = p, RMD(p), as shown in Table 5. The recursion for x_always
begins with (1, RMD(p),..), because (x.y,) = (1,0) is the (n = 0) trivial
solution and (x,, y,) = (p, q) is the first (n = 1) nontrivial solution, and
ends in RMD(p). The sequence length is 1 to 6 digits, but no lengths
of 5 occur. The digits (02 3 5 7 8) occur only in pairs, while the digits
(1 4 6 9) occur only alone. No all even sequences occur. Even-odd
recursions alternate even and odd and begin with an even digit.

Proof that the RMD recursion is a function of the RMD(p) only
relies on showing a stronger property. Namely, the x_ sequence is a
function of p only, which can be easily shown as follows. Substitute x,
=pand y, = q into (4a) to obtain:

x,=2p*- 1. 14)
Now, substitute X, = p and x, from (14) into (5) to obtain:

X, =4p*- 3p. (15)
Successive substitutions of x_and x_, , into (5) yield:

X, =8p*-8p?+1 (16)

X, = 16p® - 20p* + 5p a7

X, =32p°-48p* + 18p? - 1. (18)

The general form for x_ can be obtained by expressing (2a) as:
n
X=X (k) (qD"3ypr-k, (19)
k even

Substituting Dq? = p? - 1 from the Pell equation into (19) yields a form

TABLE 4. First nontrivial solutions to the Pell equation for D <27
and right-most digit recursions beginning with the first (n= 1) nontrivial
solution.

D X=p y=q X, recursion y, recursion
2 3 2 379731 220880
3 2 1 276721 145690
5 9 4 91 4224068860
6 5 2 5951 2080
7 8 3 874781 385270
8 3 1 379731 165490
10 19 6 91 6886042240
1 10 3 0901 3070
12 7 2 771 280
13 649 180 91 0
14 15 4 5951 4060
15 4 1 41 1836547290
17 33 8 379731 880220
18 17 4 771 460
19 170 39 0901 9010
20 9 2 91 2662084480
21 55 12 5951 2080
22 197 42 771 280
23 24 5 41 50
24 5 1 5951 1090
26 51 10 1 0
27 26 5 61 50
that is a function of p only:
" n(k/2)
X= I % (k) il Cops. @0)
keven j=0

Since the x_ sequence is a function of p only and depends only on
additions, subtractions, and multiplications, successive operations pro-
duce the recursions. Thus, the final step of the proof requires listing all
the possibilities for RMD(p) as shown in Table 5.

Table 4 shows the recursion for y, asafunction of pand qin general.
However, simplified recursions for y /q can be found by substituting x,
=pandy, = q into (4b) to obtain:

¥,=2pq. @1
As before, successive substitutions of y andy__  into (5) yield:

n+l
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TABLE 5. RMD recursion for x_and y/q versus RMD of p,
beginning with the trivial (n = 0) solution.

RMD (p) Recursion for RMD(x ) Recursion for RMD(y,/q)
0 1090 0109
1 1 0123456789
2 127672 014569
3 137973 016549
4 14 0183654729
5 1595 0109
6 16 0123456789
7 177 014569
8 187478 016549
9 19 0183654729
¥, =q(4p’ - 1) 22)
¥, = q(8p’ - 4p) (23)
y, =q(16p* - 12p* + 1) (24)
¥ = 4(32p’ - 32p* + 6p). 25)
The general form for y_ can be obtained by expressing (2b) as:
n
y,= D" ¥ (k)(unz)kpn -k 26)
k odd
As before, substitution of Dg* = p* - 1 into (24) yields:
. e (n) ((k - 1)/2)
y/a= £ ¥ \k j (-1yp"-3-1. @n
kodd j=0

Since the y, /q sequence is a function of p only and depends only on
additions, subtractions, and multiplications, successive operations pro-
duce the recursions. Thus, the final step of this proof requires listing all
the possibilities for RMD(p) as shown in Table 5. As before, (x, ¥,)=
(1, 0)is the (n =0) trivial solution, (x,, y,/q) =(p, 1) and (x,, y,/Q) = (x,,
2p) are the first (n = 1) and second (n = 2) nontrivial solutions, so the
recursion always begins with (0, 1, RMD(2p)..). The recursion for y /
qalways ends in 9. The sequence length is 4, 6, or 10 digits. The digit
(0) occurs both alone and in pairs; other digits occur only alone. All
sequences occur as even-odd recursions alternating even and odd.
The y -recursions for RMD(p) =1 and 6 are identical, as are those
for (2 and 7), (3 and 8), (4 and 9), and (5 and 0). The paired nature of
these five different recursion sequences arises because the RMD(p) is
simply mod_p, with m =10 =5 x2. Table 6 shows the recursions for
mod (x ) and mod, (y,/q) versus mod, p for 2 <m <13 and m = prime;
for ease of notation, we use A = 10, B = 11, C = 12. The modulo-m
recursions can be generalized somewhat as shown in Table 7. Some
other generalities can also be made. The recursions for mod, (x ) and
mod_(y,/q) begin with (1, mod, p,...)and (0,1, and mod, 2p,...), respec-
tively, as determined from equations (20) and (27). The recursions for
mod_(x ) and mod (y,/q) end with mod _p and (m - 1), respectively.
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TABLE 6. Recursions for mod (x ) and mod (y /q) versus mod p
for 2 <m < 13 and m = prime beginning with the trivial (n = 0) solution
to the Pell equation. The letters (A, B, C) designate (10, 11, 12),

respectively.
m  modp mod, (X)) mod_(y./q)
2 0 10 o1 .
1 1 01
3 0 1020 0102
1 1 012
2 12 011022
5 0 1040 0104
1 1 01234
2 122 014
3 132423 011044
4 14 0133104224
7 0 1060 0106
1 1 0123456
2 12056502 01410636
3 133 016
4 143634 011066
5 15026205 01310646
6 16 0153351062...
11 0 10A0 010A
1 1 0123456789A
2 12749A9472 014410A77A
3 136058A85063 0162610A595A
4 14927A7294 018810A33A
5 155 01A
6 165A56 0110AA
7 17997 0138A
8 180653A35068 0152510A696A
9 19779 0174A
A 1A 019375573910A28...
13 0 10C0 010C
1 1 0123456789ABC
2 12706BCB6072 0142410C9B9C
3 134859ACA95843 01699610C7447C
4 145AA54 018B25C
5 15A44A5 01A853C
6 166 01C
7 176C67 0110CC
8 18A9435C5349A8 01388310CAS5AC
9 1953A84C48A359 015B510C8228C
A 1A4554A 017946C
B 1B7062C2607B 0192910C4B4C
C 1C 01B3957...
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TABLE 7. Generalized modulo-m recursions.

mod_p mod, (x ) mod (y/q)
0 10z0 010z
1 1 0123..z
r=(m-1)2 lrr 01z
s=(m+ 1)2 lsrzrs 0110zz
z=(m-1) 1z
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