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ABSTRACT

An approximate method of analysis for beams with
free ends resting on an elastic soil medium is developed
by using the energy method. Prismatic beams which
are subjected to concentrated and uniformly distributed
loads and concentrated moments are considered. The
soil is idealized as a Winkler medium. Polynomial func-
tions are used to define the deflected shape of the beam.
Numerical results are developed to illustrate the influ-
ence of the relative rigidity of the beam-soil system on
the deflections, flexural moments and shear forces of the
beam.

INTRODUCTION

In the case of a deformed beam, Winkler’s hy-
pothesis (Winkler, 1867) leads to a fourth order lin-
ear differential equation and solutions have been ob-
tained for a variety of loading and boundary condi-
tions. These are available in several comprehensive
books on the subject (Hayashi, 1921; Hetenyi, 1946;
Vlasov and Leontiev, 1960). These solutions for the
beam problem are either in a trigonometric or exponen-
tial series form or in the form of an infinite series, from
which the evaluation of beam deflections or moments
is generally very difficult. Various researchers have at-
tempted to present the existing analytical solutions in a
more usable form. Certain characteristic functions re-
lated to the normal modes of vibration of a beam have
been used by Hendry (1958) and later by Iyenger and
Anantharamu (1965) to examine beams on Winkler me-
dia. The relaxation method has been used by Wright
(1952), matrix methods have been utilized by Mozingo
(1967) and Bowles (1977), and the method of initial
conditions has been used by Miranda and Nair (1966).
Iwanczewska and Lewandowski (1968) have presented
a wide range of slope-deflection equations for beams
on a Winkler medium. Baker (1957) has developed an
approximate analysis known as soil line method for the
analysis of beams and strip footings resting on Winkler
media. Kramrisch and Rogers (1961) have presented an
approximate solution for beams and combined footings

conforming to certain limitations regarding continuity,
rigidity and variations in column loadings and spacings.
The finite element method has been used by Just, et
al. (1971) and the method of finite difference has been
employed by Collatz (1960). By using the invariant
imbedding technique, Distefano (1974) has developed
an approximate method of analysis for beams resting
on Winkler media.

In this research effort, ordinary polynomial func-
tions are used to define the deflected shape of the beam
on a Winkler medium. Solution of the problem is ob-
tained by employing the principle of minimum energy
of the beam-soil and load system.

FORMULATION

Consider a beam of width B and length L which is
supported by a Winkler medium having a modulus of
subgrade reaction equal to k. The material and cross-
sectional properties of the beam are completely defined
by the modulus of elasticity E and the moment of iner-
tia I, respectively. It is assumed that the width of the
beam is sufficiently small as compared to its length, so
that only in-plane deformation of the beam will be con-
sidered. Let the beam be acted upon by a concentrated
load (P), a concentrated moment (M) and a uniformly
distributed load (of intensity ¢) as shown in Figure 1.
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Fig. 1 A typical beam on Winkler medium.

In order to simplify the analysis, each load is di-
vided into its symmetrical and antisymmetrical com-
ponents as shown in Figure 2. Complete solution for
any loading is obtained by superposition of the results
from the corresponding symmeterical and antisymmet-
rical components. Based on the properties of the beam
and soil medium, the nondimensional parameter, (AL),



14 JOURNAL OF THE TENNESSEE ACADEMY OF SCIENCE

termed as relative rigidity is defined as:
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Fig. 2a Symmetrical load components for Fig. 1.
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Fig. 2b  Antisymmetrical load components for Fig. 1
SYMMETRIC LOADS
Considering the nature of the deflected shape of the

beam for a symmetric loading, the displacement func-
tion will be taken as a polynomial of the form:
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where z = 0 at the center of the beam, y is positive
downward and Cy, C,, ..., Cy,, are constants to be de-
termined. The value of m is arbitrary and will be varied
to study the accuracy of the solution as the number of
terms of the polynomial is increased. The constant Cy is
eliminated by considering the equilibrium of the beam
due to vertical forces. This condition would require that:
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Substituting the expression for y from Equation 2 into
Equation 3 and upon integration, it is found that
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Therefore, the displacement function for the case of
symmetric loads can be expressed in the following form:
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Having obtained the displacement function, one
can calculate the total energy functional (JT) of the
beam-soil and the loading system. The total energy
functional is composed of the following components
(Tauchert, 1974):

i) the strain energy due to the flexure of the beam
(Us);

ii) the strain energy due to the deformation of the ide-
alized soil medium (Ug); and

iii) the potential energy of the externally applied loads
UL ‘

so that:
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where the displacement function y is given by Equation
5 and the total energy functional II is given by:

I=Ug+Up+U. (6d)

By substitution of the expression for y together
with its derivatives dy/dz and d?y/dz? from Equation
5, Equations (6a—c) can be integrated. The theorem of
minimum potential energy states that of all kinemati-
cally admissible states of deformation those which sat-
isfy equlibrium give a minimum of total energy, i.e., for
the total energy functional 7 to be minimum (Tauchert,
1974; Washizu, 1982).
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The above condition generates the following set of
simultaneous equations for the unknown constants Cyy,
(n=1,...,m):
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Fig.3 Data for the beam problem solved by Just, et al. (1971).
Parameter values: £ = 42.2 MN m2, EI = 1,675 MN m2, AL = 4.

where:
n=12,..., m )]

ANTISYMMETRIC LOADS

For the loads shown in Figure 2b, the assumed
displacement function is given by

y= ezozn (& (10)

where C,, Cs, ...,
mined.

Equation 10 is directly used to calculate the com-
ponents Ug, Ur and UL of the total energy functional.
This is done by substituting Equation 10 into Equations
(6a—d). On minimization of the total energy functional
IT with respect to constants Cp,,_| (n =1, ..., m) as
outlined by Equation 7, a set of simultaneous equations
is derived. The constants C,,,_; are to be obtained from
the following:

Chm—1 are constants to be deter-
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where n is given by Equation 9.
RESULTS AND DISCUSSION

The numerical results obtained from the energy
method of analysis for beams have been compared with
the exact results. The exact results are obtained from a
computer program (Sarwar, 1987) following the analyt-
ical solution for a beam on Winkler medium given by
Hetenyi (1946). To check the numerical accuracy of the
present work, a beam as shown in Figure 3 is analyzed.
This particular problem was also examined by Just et
al. (1971) by the finite element method.

The comparison of the beam displacements is pre-
sented in Table 1. The results indicate that the magni-
tude of error is very small. The distribution of flexural
moments is graphically presented in Figure 4. It is ob-
served that the results obtained from the energy method
underestimate the values given by Just et al. (1971) as
well as those results obtained from the exact analysis.
This difference is particularly noticeable at the points
directly below the loads, the maximum error being of
the order of 4%. The comparison for shear forces is
presented in Figure 5. Unlike flexural moments, com-
puted values for shearing forces are overestimated by
approximately 8% at the center of the beam.

Table 1 Comparison of Displacements

Dist. from Energy

left edge F:\agt 1V g'i,‘; solution Pg:ffpt
(m) (m x 1079)
0.0 4.10539 4.06106 -1.08
2.0 6.84542 6.81051 -0.51
4.0 9.14745 9.19227 0.49
6.0 11.15550 11.08746 -0.62
8.0 11.76190 11.85717 0.81
10.0 11.78610 11.68827 -0.83
12.0 10.56230 10.64891 0.82
14.0 9.09365 9.01999 —0.81
16.0 6.95958 6.99786 0.55
18.0 4.87365 4.84294 -0.63

20.0 2.55399 2.52437 —-1.16

Since in the energy method only a finite number
of terms of the polynomial function can be evaluated
to define the deflected shape of a beam, the solution

“will always be approximate. The degree of accuracy

of a given solution will, therefore, be dependent on the
number of terms used for a particular analysis. A beam
with the loading and material properties as shown in
Figure 6 is used to investigate the accuracy of vari-
ous approximations. The results are compared with the
exact values in Table 2. It is observed that with the
use of an increased number of terms, the results are
improved. For the particular problem, while the con-
vergence in displacements is obtained with the use of
only 10 terms, accurate results for flexural moments and
shear forces would require the use of larger numbers of
terms. If only four terms are used, the maximum varia-
tion in moment is approximately 4% less than the exact
value. It may be worth pointing out that the moment
and shear are less accurate because the moment is the
second derivative of the assumed deflection function and
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Fig. 6 Beam loading for the study of convergence.

Table 2 Convergence of Polynomial
Solution (Based on Fig. 6)

Number of
terms in the
polynomial
function

Percent error
with respect to
exact solution

Displacement

—2.498
-0.126
—0.020
0.008
0.001

S OOo AN

Moment

—20.538
—3.245
—0.599

0.827
0.329

OO AN

Shear

—76.745
19.338
16.445

5.459
0.402

[@2e-Te) RPN \V}

shear is a third derivative.

The results presented so far are based on the rel-
ative rigidity parameter, AL, in the range of 4 to 6.
For rigid beams with low values of AL (say less than
3), better agreement exists between the computed and
exact values. As AL increases, the error in the com-
puted values increases. To study this factor, a beam
with a concentrated load at its center is analyzed for
a wide range of AL, ranging from 1 to 10. The com-
puted values are compared in Table 3. From the results
for displacements it is observed that the energy solu-
tion yields approximately the same result as the exact
method. But for flexural moments and shear forces, the
magnitude of error increases as AL increases. Also the
error in the calculation for shear is higher than that for
flexural moment. At AL = 10, the maximum error in

shear being approximately one half of the exact value.
This suggests that for very flexible beams (such as with
AL > 10), the results for shear might be highly inac-
curate. Fortunately for us, since all beams encountered
in practice have the values of relative rigidity AL in the
range from 1 to 6, the results of the energy solution can
be used as a useful tool for design purposes.

Table 3 Effects of Relative Rigidity () L)

AL Exact method Energy method
Displacements at center/(P kL)
1 1.0124 1.0124
4 2.1599 2.1581
10 5.0008 4.9298
Moments at center/(PL)

1 1.2143 x 10~' 1.1614 x 10~
4 6.5866 x 1072 5.7697 x 1072
10 2.5003 x 1072 1.6868 x 102
Shear (at z =0.4L)/ P
1 3.9883 x 10! 4.6558 x 10~
4 2.9330 x 10~ 3.6002 x 101
10 9.9329 x 102 1.6501 x 10~
CONCLUSIONS

For beams resting on Winkler media, solution by
the energy method is developed and the convergence of
the solution to the exact results is established. Numer-
ical results are developed to illustrate the influence of
relative rigidity of the beam-soil-load system on beam

““deflections, “flexural moriients and shéar forces. It is

observed that for beams having low values of relative
rigidities (AL < 4), the energy solution yields very sat-
isfactory results. The results for flexural moments show
only slight variation (of the order of 4% and 8% below
the exact solution, respectively). The effect of increased
relative rigidity of the beam-soil system is to increase
the deflection of the beam at or near the point of load
application. The flexural moments and shear forces are,
however, decreased. The present solution responds to
increased AL favorably well, provided that AL < 6.
Based on practical standpoints, the energy solution ob-
tained from the use of only 4 terms can be used to
adequately determine the displacements, moments and
shear forces in a beam.
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