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ABSTRACT

Rigid rotor collision transition probabilities are
calculated for a two-dimensional model by a strong- coupl-
ing approach. N,-Ar interactions are approximated by a
sum of Lennard-Jones potentials, and the dependence of
the transition probabilities on initial relative translational
energy and on initial orbital angular momentum quantum
number is investigated. Transitions involving a (Dm) of the
rotor of 4, 6, and even 8 are quite probable even at relative-
ly low energies.

INTRODUCTION

The problem of calculating rotational transition pro-
babilities is one of long standing, dating back to Zener’s
work in 1931.! The older literature is well reviewed by
Takayanagi,? and by Gordon, Klemperer and Steinfeld.3 A
variety of approaches has been used, including the
adiabatic* and sudden’ approximations, and the method of
distorted waves.6.7:89.10 Arthurs and Delgarno!! used
Racah’s formalism to couple the rigid rotor states with the
colliding particle’s orbital angular momentum states, with
which they then considered several approximations.
Takayanagi and Nishimural? used the modified wave
number method,? and Allison and Dalgarno!? did close-
coupling calculations for the 0 ? 2 rotational transitions of
H, and D,.

The major problems with the calculation of rotational
transition probabilities are that (1) the interactions are suf-
ficiently strong that some form of close coupling method is
needed, and (2) the number of quantum states which must
be coupled is large. These difficulties are similar to those
which arise in computing molecular vibrational transition
probabilities, and we here present an approach to the rota-
tional problem very similar to ones used earlier by
Gordon!4 and by ourselves!’ for computing vibrational
transition probabilities. We consider the problem in two
dimensions for reasons of economy.

ANALYSIS

We consider the model shown in Fig. 1, representing a
planar collision of an atom of mass m,; with a rigid
diatomic rotor composed of masses m, and m, separated
by a distance of r,. Coordinates r, © and ¢ are as indicated;
the origin is taken as the center of mass of the system, and
r is measured from the center of mass of the rotor to ms; a
= IgMy/,/(Mm; + my); b = rgm,;/(m; + m,); u; and u, are
the distances between m; and atoms 1 and 2, respectively,
of the rotor, as given by Eq. (1).

uf = r2 + a2 - 2racos(0-¢)

u3 = r2 + b2 + 2rbcos(@-9) (l)

The time-independent Schrodinger equation of the system
is given by
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o= mmp/(my+me), M= (my+mp)my/ (my+mp+my) .
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We approximate the interaction potential by
V= V(rj, o-9), Uj-l <r 505 H
r.= (0, , +6.)/2,
3 j-1 j
and in the same annular region we approximate
C))
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With the above approximations the Schrodinger equa-
tion is separable, yielding
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We expand V(r;, ©-®) in a Fourier series:
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where the prime indicates omission of then = 0 term in the
summation. On separating the variables in Eq. (5), we ob-
tain
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where the a9 are separation constants. We define
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and note that the general solution of Eq. (8) in the jth an-
nular region can be written in terms of Hankel functions of
order zero, as follows:
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where the index p dnticipates the existence of a set of
separation constants &,
We assume a trial solution for Y, 0 (0, ) as follows:

- (11)
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on substitution into Eq. (7) this yields
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This form of solution is suggested by the fact that the total
angular momentum of the system is conserved during col-
lision, so that, if our incident energy eigenstate is an
eigenstate of the total angular momentum, the scattered
eigenstates will have the same total angular momentum.

The orthogonality of the exponentials then requires that
the coefficient of exp {i[p$ + (my+1ny’p)@] } in Eq. (12)
vanish for all p, from which we obtain

(13)
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Equation (13) is an eigenvalue problem for the aG’s and
the a,0; let the solutions be oy, a9, 1 = -N,... + N.

The solution to the Schrddinger equation in region jis
then given by
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The wavefunction and its gradient must be continuous at
the boundary r = ¢; between regions j and j + 1. This yields
the following set of equations:
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The A’s are the amplitude factors for outgoing partial
waves, and the B’s are associated with incoming waves.
We write Egs. (15) in matrix notation as

(15a)
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At the inner boundary to the innermost annular region
we require that the wavefunction vanish; this yields
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We rewrite Eq. (15a) as
an
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We use Eq. (16a) to rewrite Eq. (18) as
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which we then partition as
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We eliminate A® between Eqs. (20) and (21), and solve for
A® to obtain
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The transition probabilities for the rotor associated with
the incident energy and angular momentum eigenstate
(specified by a rotor quantum number my and an orbital
quantum number n,) are then given by
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No quotient of wave numbers is needed for normalization,
as these are already included in the asymptotic forms of the
Hankel functions.

The coefficients d,® introduced in Eq. (6)—the Fourier
coefficients of the interaction potential—are given as
follows when the interaction potential is taken as
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RESULTS

Transition probabilities were computed on an XDS
Sigma 7 computer using up to 21 channels. Calculations
were made principally for argon-nitrogen collisions;
Lennard-Jones parameters were estimated from data for
argon and neon,!6, and r, was taken from Herzberg’s
tabulation.!” The interaction potential was approximated
in nine concentric annular regions, a compromise between
accuracy and economics. Normalization was found to be
quite satisfactory, an anticipated + 2j selection rule (j =
0, 1, 2...) for the homonuclear rotor was observed, and it
was observed that P, = P_,,, for the case of an incident
s-wave (ny = 0), as expected.
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A frequent approximation in rotational scattering
calculations is to expand the interaction potential in terms
only through the second spherical harmonic, correspond-
ing in our work to the terms in exp (+ 2i©). In Table 1 we
list the Fourier coefficients, dy®, d.,®, d,,®, etc. for
argon-nitrogen collisions. It is evident that the d_,® are
very frequently of the order of a fifth as large as the d, ,0),
and that the d, (® are often about a fiftieth as large as the
d.,0. The effect of neglecting these higher coefficients
(I n| >2) is indicated in Table 2. While the transition
probabilities show similar trends, they do show some sub-
stantial differences.

Plots of transition probabilities at various relative
translational energies are shown in Fig. 2. One can
calculate an effective impact parameter by means of the
formula b = ny/ky, where k, is the wave number of the in-
cident wave; these are given in the figure, and are such that
only one of the collisions corresponds to grazing incidence
or a ‘“‘near miss’’. We find that transitions involving Am
values of 4, 6, and even 8 are by no means of negligible im-
portance except for the collision of lowest energy and
largest impact parameter.

TABLE 1. Fourier Coefficients of the Interaction Po-
tential,

o
r 3.175 3.375 3.675 4.250 A
n
0 .4498x10-13 .4009x10°14 -.5388x10°14 - 4912x10°14
+2 .2884 7576 .1814 -.0208
+4 0539 11390 0380 0012
£6 0060 0139 0035 0001

+8 0005 .0010 0004 0000

TABLE 2. Effect of Higher Fourier Coefficients in the In-
teraction Potential.

m Pp<0 (complete) Py « o (2-term approx.)
8 0473 0221
6 0174 .0203
4 .3929 3523
2 .0031 .0251
0 .0473 1575
-2 0690 .0104
-4 3238 .3406
-6 .0558 .0528
-8 .0435 0189

Ar-N, collision, njpjy = 10, mjpii= 0,61 = ey = 4.416 ¢ 1015 erg, oy = 0y = 3.12 Ao,
Einit trans = 3-5x 1014 erg, 1 1.094 A,

The occurrence of multi-quantum transitions is again
observed in Fig. 3, where the initial orbital quantum
number, n,, is varied at constant initial relative transla-
tional energy. Note that Py, = Pg. . forng = 0, which one
would anticipate from symmetry. These results also sug-
gest that one would need to do calculations for n, =
0,5,10... up to about 60 or 70 for this model at this par-
ticular incident relative translational energy if one wished
to obtain plane wave scattering cross-sections. This would
be a rather ambitious undertaking.

In Fig. 4 we see the effect of changing the initial orbital
quantum number at lower energies. At grazing incidence (b
= 4.28 &), two-quantum transitions predominate, as one
would expect. At a somewhat smaller impact parameter,
transitions become most important even at these low
energies. L

The results of this analysis of a planar model for rota-
tional transitions do not bode well for an extension to three
dimensions. Although the three-dimensional calcaulation
by this method is possible in principle, the enormous size
of the set of basis functions which would be needed in-
dicates that very large quantities of core and machine time
would be needed for all but collisions of the lowest energy.
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FIGURE 1. The model and notation.
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FIGURE 2. Rotational transition probabilities for N,-Ar
collisions at various initial translational energies. €, = ¢,
=4 416y 1055 erg, 0; = 0y=3.120 1) = 1.094

FIGURE 3. Rotational transition probabilities for N,-Ar
collisions at various initial orbital angular momenta.
Parameters as in Fig. 2.
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FIGURE 4. Rotational transition probabilities for Ny-Ar
collisions at grazing incidence. Parameters as in Fig. 2.




