ADEMY OF SCIENCE

38 JOURNAL OF THE TENNESSEE AC )

Southern States, particularly Alabama and Middie Tennessee.

Rhodora 78:438-456.

A new Xyris (Sect. Xyris) from Tennessce and
Northwestern Georgia, Rhodora (in press).

Mahler, W. F. 1970. Manual of the legumes of Tennessee. Jour.
Tenn. Acad. Sci. 45:65-96. ‘

Piehl, M. A. and P. N. Piehl. 1973, Orobanche in Tennessee.
Jour. Tenn. Acad. Sci. 48:39,

Pringle, J. S. and A. J. Sharp. 1964. Gentiana au:ﬂmmuntana. a
new species from the southern Appalachians. Rhodora
66:402-404. _

Rogers, K. E. 1970. A new species of Calamovilfa (Gramineae)
from North America. Rhodora 72:72-80.

Rogers, K. E. and F. D. Bowers. 1969. Notes on Tennessee
plants I. Castanea 34:354-397.

. 1971. Notes on Tennessee plants II. Castanea

36:191-194.

. 1973. Notes on Tennessee plants III. Castanea
38:335-339,

Rogers, K. E. and J. K. Underwood. 1966. Some plants new 10
Tennessee. Rhodora 68:518-519.

. 1968. Some noteworthy Tennessee plants. Castanea
33:260-261. _

Sharp, A. J. and A. Baker. 1964. First and interestng reports
for some Tennessee vascular plants. Castanea 29:178-185.

Sharp, A. J., R. E. Shanks, J. K. Underwood, and E. McGilliard.
1956. A preliminary checklist of monocots in Tennessee, Ms.
The University of Tennessee, Knoxville.

Sharp, A. J., R. E. Shanks, H. L. Sherman, and D. H. Norris.
1960. A preliminary checklist of dicots in Tennessee. Ms, The
University of Tennessee, Knoxville.

Shaver, J. M. 1954. Ferns of Tennessee. George Peabody College
for Teachers: WNashville. 502 pp.

Small, P. F. and F. H. Barclay. 1973, New county records of
Tennessee orchids. Castanea 38:189-193.

Smith, C. R. and R. W. Pearman. 1971. A survey of the
Pteridophytes of Northeastern Tennessee. Castanea 36:181-191

Thomas, R. D. and E. W. {Ihesmr. 1967. Xerophyllum qs-
phodeloides, Mirabilis nyctaginea, and Cardiospermum halicq.
cabum from Tennessee. Castanea 32:183-18S.

Ware, S. 1967. A new Talinum (Portulacaceae) from the cedar
glades of middle Tennessee, Rhodora 69:466-475.

Watson, J. R., Jr. and K. E. Rogers. 1972. Eriogonum harperi
Goodman in Tennessee. Rhodora 74:154.

Wofford, B. E. and W. M. Dennis. 1976. State records and other
recent noteworthy collections of Tennessee plants. Castanea

41:119-121. '
Wofford, B. E., D. H. Webb, and W. M. Dennis. State records

and other recent noteworthy collections of Tennessee plangs
I1. Castanea (in press).

JOURNAL OF THE TENNESSEE ACADEMY OF SCIENCE

VOoLUME 54, NUMBER |, JANUARY 1979

PROPERTIES OF SCATTERING AMPLITUDES WHOSE
PARTIAL WAVES DECREASE EXPONENTIALLY
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Fisk University
Nashville, Tennessee 37203

ABSTRACT

This paper presents the properties of elastic scattering
amplitudes that have partial waves, f,(s), which
decrease exponentially with 1. The amplitude of this
paper is a model for elastic scattering processes al
asymptotic energies where all physical quantities trans-
form as homogeneous functions of the approprate
dimension in the energy variable (Mickens, 1976).

INTRODUCTION

A method of determining the properties of an elastic
scattering amplitude is to investigate the corresponding
partial wave series. In this paper a study is made of the
properties of scattering amplitudes whose partial waves

decrease exponentially.

CALCULATIONS

Consider the elastic scattering of two scalar particles
of equal mass M and denote the scattering amplitude by
F(S,t). This amplitude has the following partial wave
expansion (Eden, 1967),

(2) FAS ) = EK—J'E Z (2a4) £

lzo .l.“'} E(CHQ),

where,

( § = 4(M +kK?),
2)
= -2K'(L-cosB),

and the unitarity condition is,
) 0% [£1" € Imf, = 4.

The total cross section is given by the following
expression (Eden, 1967),

| g
(4) O (S) -{1|<J?'] Im F(5,0).

The physical region corresponds to S = 4m? and —4k*
=ateif),

The major assumption is that the partial waves, f,(s),
decrease “exponentially” with I, 1.e.,

|
) f(s1=Ch™ | 220,12 ...,

where h(S) is a real valued function of S, satisfying in
the physical region the condition

(6a) o< his) <y,

and C(S) is a complex function of S. Unitarity requires
that,

(6b) © = ,cml‘f._ ImCts) ¢ 4.

JOURNAL OF THE TENNESSEE ACADEMY OF SCIENCE

Finally, ReC(S) = d(S) and ImC(S) = a(S) will be
defined. Other than the conditions given by equations

(6a) and (6b), no further restrictions will be placed on
C(S) and h(S).

Substitution of equation (5) into equation (1) and
using the fact that for 0 < h < 1 (Hobson, 1931),

o 1
(7) 3 (2241 h* P (coss) = Josl P
hzn - [1-2heors + L{"]’ L7
the scattering amplitude is found to be,
rd
(8) F(S,t) =8 ,% (-h) ¢ e

[1-?.%\ cord +h"]”1

In terms of the variable t, the left-hand side of equation
(8) may be written,

o) FUS ) - 3 [B'rr H-h"](‘.]
) KI _b_ ':Ih_ zk,t (I h)L + 31’1.
( zk‘) [ (T ) ]

Note the amplitude, equation (9), has no zeroes in
the t-physical region and, in addition, for fixed S, the
amplitude 1s a monotonic decreasing function of t.
These results imply that the differential cross section is
a monotonic decreasing function of t with no zeroes.

It is easily seen that the phase, defined as the ratio of
the real to the imaginary parts of the amplitude, is a
function of only the energy variable S, i.e., it is
independent of t,

Re F(s,¢) d —_
(10) sty St . d(S) _
Im Fis,t)  acs) ~ $s)

From the unitarity condition, equation (6), the folowing
bound on the phase is obtained,

(11) [@Ls.tsl.-. l%uﬂ' <1,

Using equations (4) and (9), the total cross section
may be calculated; it is,

(1-h)? (S-4mt)
The requirements of equation (6) imply that the total

cross section decreases essentially as the inverse of the
energy variable S.

The diffraction width is defined as (Eden, 1967),

. _ d
(13) \(S) = H{buj I F(S'.‘t;k
t=0.
It 1s easily calculated and has the value,

i Am=[ h “ 3 'l
(-h)*{] §-4Mm?

Th'e differential cross section is given in terms of the
amplitude F(S,t) by the expression (Eden, 1967),

— e — T e

de(st) _ |Fis)?

(15)
4t JLTr S (S -4m?)

’

Substitution of equation (9) into equation (15) gives

the following for the differential cross section,

doest)  wwictt (1-hY)

(16) o1 t. L E—
dt 7 (5-4MY)[1-2hcoss +h?]

The forward differential cross section is,

(7) 995,00 _ e ICIt 14k
dt (s-4m*)* (1-h)1
An easy calculation gives,

(15 ) G-Eluhi. [S‘]:[ 41 -J [l:‘\\t]

51— 4 M2

X {1 = (i=h')?
(I1-h*+2h)% | °

SUMMARY

Let us summarize the above results: (i) The phase is
a function only of S and is bounded in absolute value by
one; (1) The diffraction width, total and elastic cross
sections all decrease with energy (essentially) as the
inverse of the energy S; and (iii) The forward
differential cross section decreases (essentially) as the
S—2 It is the exponential decrease of the partial waves

which 1s responsible for the rapid decrease in various
physical quantities.

It is of interest to note that the same properties come
out of a consideration of scattering processes at
asymgtptic energies where we assume that all physical
quantities transform as homogeneous functions of the
appropriate dimensions in the energy variable (Mickens,
1976). This is equivalent to having the lack of any
fundamental energy scale at very high energies.

Finajl_ly, it may be pointed out, that as a function of
the variable t, the amplitude, as given by equation (9),

has a branch point which is a function of S. Its location
1S,

- | S~-4Mm? _p ok
(1) t = [-———_‘lk 1(1 LY
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