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/”_Ju_) 2 be determined by Gibb's energy calculation. Suppose that a
phase at equilibrium contains x, moles of a substance M,. Each
A ORY chemical substance M, is made up of atoms b, and let the
A . number of atoms of b, in M, be a,;. An atom-constituent
In many chemic rocess specifications are matrix equation can be formed as follows:
estrictions for a problem. AX =B )

presented with maxi :
The possible solut the restrictions form a
convex region, and itions always lie on the
boundary of the conv
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of N dimensions woer

ction of points in a space
iry but fixed (James and

b7 1949). The extremc s of a convex set are those
points of the set whict not lie on a segment between any
two other points of the set. It follows thus that, if the extreme
1l the points of the set can be deter-

boints are known, then a
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and thus the system of equations is
: a,,X; = by
; i=123..,mandj=1,23..,n0
The chemical substance would then be written as

M = (by)uy(Pa)asy - - - Om)ama @
and the chemical formulla.;::r M :; s
M = ajay . . - Amy [£3)

In vector sense, Equation 3 is a row vector. If the rank of the
atom-constituent matrix is r, then the number of independent
vectors in the equilibrium space is r and each of the vector is
a chemical jon and may be represented as a linear combi-

petween all points lying on these line segments. For
the extreme points Py, Py, . . -, Pa of a convex set are finite in
number, any other points may be expressed as
P—3k/P, ,i=1,2 ... 1

where k,=0, and Ekl=1

restriction is the boundary of the set. The feasible solutions
are those solutions which lie in the region bounded by the re-
strictions. Theoretically, there may be an infinite number of
feasible solutions, but only those optimal solutions are of more
concern. The optimal solution is the solution at an extreme
point of the convex set. In other words, solution need be sought
only at the extreme points of the convex set which is bounded

the finite restrictions, and there will, in general, be a finite

nation of vectors such as

SiSMyy = 0,j=12...0 @
These vectors are called stoichi i jons in the chemical
literature and the S,

are called stoichiometric coefficients in
the reactions. They count for all the chemical substances in the
equilibrium mixture. The mini number of independent re-
actions which can count for all of the substances is (n-r) since
each reaction contains a particular substance which the others
do not. However, the minimal set i is not ry
properties because the thermodynamic properties are state
tions and their calculation is indcpcn:iem r.:f the path fc_!llovzs

by the formation of the elves. nally,
these (n-r) equations must be solved simultaneously with 1
ind ic bal in order to obtain the composition

set of vectors (Hadley, 1962). If the coefficients are positive,
then these eoeﬂiqiems are the components of the vector which

N-space, its minimum and maximum values are at the extreme
points of the set. Therefore the function may be stated cither as
a maximum problem or as a mini problem and the optimal
solutions may be obtained from either (Clasen, 1963 and; Hadley,
1962). This is the normal mode of duality theorem. The mathe-
matical formula of the theorem is
PX. — max(PX) = BY, = min(BY)

subjectto AX — B and AY =P
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Tbemfuretheuquilibriumuluﬁcfthespeciucanbeobmed
either inimizing Gibb’s functi bject to mass cons

or mmmmgb’ @m?:: energy contribution function subject to
energy constraints. The theory is sound as Dorn (1960) de-
veloped. For proofs see references (Brinkley, 1947; Clasen, 1963
and 1965; Dorn, 1960, and; Hardy, et al, 1959). Tlaus a dua_l
program can be formulated for the problem of chemical equili-
brium.

CoNVEX DUAL PROGRAM

We would now like to formulate the chemical equilibrium
problem under specified conditions as a dual convex program.
It may be formulated as a dual geometric program, too, as
Duffin, Peterson, and Zener (1967) developed.

Let F be Gibb's free energy, u be the energy contributed by
constiutent atoms, D be free energy column matrix, and E be
the transpose of matrix A, then it is clearly that a general
convex dual program may be formulated for n components
made of m different atoms as follows:

A. Dual Program Maximizes the energy contribution function

f(u) = 3byy, 5)
subject to EU =D 3
and al 5,20 i=12...,m

here u, is the energy contributed by atom b,.
By virtue of the duality theory of convex program we have
the following equivalent procedure for determining the com-

position of the equilibrium state.
B. Primal Program Minimizes Gibb's free energy function
f(x) = 3d;x, (@)
subject to the mass constraints
AX =38 (8)
and allx;=0 , j=12..,n
here d; is Gibb’s free energy of jth component and
d, b,
ds b,
D= B s
f b
When the system is at equilibrium state oy
f(u) = f(x) . 9)

This equation shows that the constrainted maximum of the dual
function f(u) is equal to-the minimmum of the primal function
f(x). The constraints of the primal function are active, wh
the constraints of the dual function are inactive. Hence the
dual function is essentially without constraints, an important
property from computational point of view. Thus the dual
problem can easily be solved by standard numerical techniques
with the help of a computer.

Each value of the dual function provides a lower bound on
the minimum value of the primal function. Because the nrinimum

the dual function, this common optimal property reduces the
number of calculation iterations and can be approximated by
any given arbitrary accuracy (Calsen, 1965).

The problem of chémical {equilibrium has a long history.
However, not until 1960 has much attention been paid (Calsen
1965). White, Johnson, and Dantzig (1958) observed that
minimization of Gibb’s free energy is a convex program and
they compared two' numerical techniques for carrying out the
minimization, one of which was suggested by the work of
Charnes (1961) and Duffin (1967). However, Dantzig's work
is not a dual program. 5

Related theoretical work is given in the papers Clasen
(1963 and 1965), Shapiro (1964), and Shapiro angySMplcy

gmponuon.

14964) . of Rand They prove several theorems
2bout chemical p m*ev-ilybem
lated into properties of the dual program.

As an example of the application of the duality tt

species:  CO,(%1), CO(x;), H,(xs), O,(x ),
H,0(x,), CH,(x,) and the atoms of the mole by),
O(b,), C(b,). Therefore, the atom-constituer o
is

0 0 4 Xy
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; B | 1 e

It is obvious that the coefficient matrix is
of- this matrix is 3 so that we shall have
constraints for the primal function with 5
The number of independ ponents is
in specifying the mixture composition.

To have an explicit form for the primal
assume that the pressure P is sufficiently low
ponent gases can be regarded as obeying i
PV — RT. Gibb's free energy for a simple s

the relation
dF = VdP — SdT )
where S is entropy. In particular, for one mole ™

[g‘.’ ] =y RY
1T 7 (12)
Integration of this diff ial equation gives
F = RTLoP 4 F° (13)

where F° is Gibb’s free energy per mole at temperature T and
1 atm.

To evaluate F for the mixture, appeal is made to Dalton's
law of partial pressure. Thus, if P is the total pressure and P,
are the partial pressures of the species, respectively, then

Py=2lp S A e
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=

Thus the total free energy of the mixture in dimensionless form
is

F F,*
f(x) =ﬁ = 3x,(LnoP, +R_£l') (14)
or equivalently,
l‘:__r — 3%, (Cy + Lnx,) — xLnx as)
where
T
C = gt LoP
and

X=X 4 X F.eotXse-
Then the system of equations is
Sa,%y = by forall x, = O .
The free energy at equilibrium is
F— — RTLn-X.  when derivative of f(x) = O.
x

The energy contributed by the ith atom to the reagtion is
designated by u, and is admissible. In h ical form it is
f(u,) = by (16)
But the total energy contribution of all atoms in a' molecule
can not exceed Gibb's free energy of the molecule and is ex-
pressed as
f(u) = 3bu=f(x) (17)
and allb=0fori=1,23.
Also the total energy contribution at equilibrium is
F — RTf(u) when derivative of f(u) = O.
Wearenowintheposiﬁontoiorm‘tﬂatethcch_emiul equili-
brium problem as a convex dual program. Conmsider the d
function that consists of maximizing
f(u) = 14u; 4 Su; +— u,
subject to the energy constraints
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subject to the mass constraints

6Xs - %o 4 2%, 4- 4%, = 14

ag ons of x value
of x, for r 1 i t erical accuracy,
say 0!01, as near 2 x) — f(u) — O. When the primal
function show > ble difference with the dual function
or vice versa, the values of x, from the last calculation are the
optimal feasible solutions.

The results of the first trial are listed in Table 3. It can be
seen from the table that species 4, 5, 6 are present at negligible
amounts and that x, is negative. Thus it is necessary to re-
assign a set of x, for calculation iteration. The possible species
in the mixture then becomes CO,(x,), CO(x,), H,(x,), H,O(x,),
CH,(x;). The rank of the at i matrix ins 3
but the minimum number of the possible independent reactions
is 2. The re-assumed non-negative x4 are shown in Table 1. The
species 1, 3, and 4 are chosen as the principal components of
the mixture for constructing u,, u,, u,. Optimization is pursued.

It is interesting to note that a significant difference between
the energy contributed by all constituent atoms and Gibb’s free
energy exists. Thus the procedures are repeated until the energy
function f(x) shows no appreciable further improvement. The
results are presented in Tables 2 and 3. The values of f(u)
and f(x) from the 11th calculation are nearly identical; hence
the values of x, from this calculation are considered to be the
optimal feasible solutions.

RESULTS AND CONCLUSIONS

The solution of this problem is based on the assump-
tion that equilibrium is attained. In actual operations
that do not reach equilibrium, quit different results may-
be obtained, depending on the rates of various reactions.
It is common for equilibrium to be approached with
respect to one or more reactions while many other re-
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actions which are not thermodynamically possible do
not oc extent. The minimum
number of th i n -tions in this example
2 h . the constituent atom

hese 1 i all possible resultant
nd y be used to com-

tion if the equilibrium

a

lation of Gibb’s free energy, the chemi-
e reaction mixture are found to be COs,

"H. and the amounts of Os, C:H.,
esent at negligible extent. The results of this
omparable with those by Dodge (1944) and

»n (195 _1) '

In the chemical equilibrium problem, the molecular
products must be pre-determined for the equilibrium
composition if equilibrium constant method is used.
However, if dual method is used, the calculation of free
energy and the measurement of a compound can pre-
dict all possible products from which a constituent-
matrix can be formed to determine the minimum num-
ber of possible independent chemical reactions involved.
Therefore, no assumption is needed to neglect some of
the species in the mixture. As the free enrgy at equili-
brium is minimum and the admissible energy contributed
by the atoms is maximum, with mass constraints and
energy constraints to relate the energy functions, the
existence of a solution to the problem can be assured
and a quick convergence can be expected by duality
theorem.

The duality theory takes minimization of free energy
and maximization of admissible energy contributed by
the atoms to approach equilibrium, while Dantzig’s
(1953) work takes only minimization of free energy
compared with two numerical techniques but his work
is not a dual program. Furthermore, the dual method is
easily adapted to either by hand or by computer anc
only basic mathematics is required to do the computa-
tion. It takes only one initial trial value of xy/x for
construction of atom-energy contribution and less cal
culation iterations for optimal solutions. This implies
faster convergence to the optimal solutions. No simul-
taneous equations need be solved by trial and error
procedures with this dual method in contrast to the
steepest descent or equilibrium constant method. A com-
puter code is developed for solutions to a general convex

dual program.

TABLE 3:
Possible Ce on the Reaction Mixture

No. Species Yy £(x) H o C Xy

1 CO, 0.425 —9.3901 — 0.85 0425 6.8651

2 co 0.360 —32.0882 — 0.36 0.360 —2.4593

3 H, 3,120 —53.6672 6.10 - _ 1.8969

4 0, z 0.120 —3.5128 —_ 0.24 — 3.99x10*
S C;H, 0.010 —0.4528 0.06 — 0.020 1.48x10
6 C,H, 0.010 —02773 0.04 — 0.020 4.90x10"
1] H,0 3.610 —39.1288 7.10 355 - 1.7289

8 CH, 0.175 —1.1122 0.70 — 0.175 0.1871

7.830 14.00 5.00 1.000
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