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ABSTRACT
Some concepts from information theory loyed by en- There appear to be fruitful areas of application of these con-
gineers working in the field of signal detection provide useful cepts to  inf probl ed in the social and
k and information content for analyzing industrial sciences. In particular, the “entropy” and “informa-

objective measures of ris|
problems where an investigator would like to infer some one
of a discrete set of events or states of nature using a discrete forward probabilistic analysis of such problems.

set of responses or signal outputs as a basis for the inference.

In recent years Information Theory and Signal Detection, once the exclusive domain of
communications and systems engineers, has been stirring interest in other areas of engineer-
ing and the sciences. Some of the ideas from these fields appear adaptable to the social and
industrial sciences and have caused considerable discussion among persons in these fields,

Information theory was principally originated by Claude Shannon in 1948 and 1949 and is
a branch of probability theory. It also borrows heavily from concepts in thermodynamics. The
power of Information Theory comes from its ability to guantify the predictability of a discrete
system and to provide a device for measuring the amount of information derivable from observ-
ing a given system and for discriminating among possible alternatives in the system.

o briefly review the basic concepts of Information Theory
tem environment and to present some feasible areas in
which these ideas may materially assist in the analysis of a problem. One should not expect
these ideas to open new vistas of research, rather the hope is that it will provide means for
improving the clarity and preciseness of an analysis of a given problem.

The purpose of this discussion is t
and Signal Detection in a dis crete sys

THE GENERAL PROBLEM

Given a discrete set of possible events or states of nature E|, Eou EB’ vers By, an investi-
gator desires to infer some one of the events by using previous knowledge and obtamablg data,
Associated with the events are a discrete set of related signal outputs Vl' Vz, Y Vm that
may be measured (perhaps system responses or activities might be a meaningful alternative
designation than signal outputs). The tasks are to determine an optimum decision process for
the given system for inferring events when given the signal outputs, and to establish criteria
for comparing feasible decision schemes and available signal sets.

If one may assume from theoretical consid
probability distribution for the events, P(Ey),
probabilities of the signal outputs Vj given each event Ej, P(Vj | Eg,
may be carried out as a stralg
the back probabilities, i.e. the conditional probabilities of the eve
vy, P(E4|V;), may be computed. These back probabilities may then
hoods of the given events given various detector outpu
decision rule is to infer that event for each detector ou
P(Es 1 V) is maximum. [Abramson, 1963; Middleton, 1960] . This rule of course corresponds
nicely fo one's intuitive evaluation of such a procedure.

and if further one may establish the conditional

28

tion” functions provide a valuable enrichment to a straight-

erations or establish from previous experience a prior

the first part of the analysis
htforward problem in conditional probabilities., Using Bayes Theorem,
nts Ej given each signal output
be used for inferring the likeli-
ts. It may be shown that the minimum error
tput V; for which the conditional probability
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This analytic procedure may be enriched by ideas from infor

i " " mati.

wentropy and the "average mutual information" are important c:om:eo::1 t]:eory. In particular, the
a system. These provide objective measures of the average r{ Pts in the description of such

4 of the average information provided by the system. They :l‘; ;“:S:Ont in the inference system
comparisions of several possible competing signal sets or to aggess tl:: Ol;e to make objective
pinations © efficiency of using com-

f several signal sets.
e event entropy of a discrete system may be defined as

n
HE) = F

Th

PE) | 1l o«
(8 . i 109 FET
This function assesses the "no measurement risk" of the system, that is the risk associated with

he basis of prior probabil
making an inference on tl P ities alone without ben ents
It is a sensible and useful measure in that it has the following very desl?jﬁeoitzx::::umm ’

a) H(E) =0 if one of the prior probabilities is 1 and the remainder ar
certainly intuitively pleasing since one would be disposed to thl.ni zo:'r:.;chn:: ook i
a no risk inference. This constitutes a minimum value for H(E) HES Be bt

p) H(E) gchieves its maximum value and is equal to log,n when all the prior probabtlities are
equal. Again this agrees favorably with intuition since it represents the case of pure
sing which one would like to think represents maximum risk., PHFE 9088~

The "one measurement risk” or "entropy" is defined as

n m
@ HEWV) = £ L PE,V) log
=1 = i [ )
= e 4 PE[V)
n m
=z p P(E;} P(V; |E)) log L s
=1 =l 2RIy

This function provides a reasonable assessment of

the average risk associated with maki
tnference which incorporates the results of measuring the output of the signal set V,. Si:geatl;xe
term d:‘:‘;l is perhaps more meaningful in this context than entropy, we shall henceforth use that
erm. e inequalities 0 < H(E|V) < H(E) provide bounds for the function,

The "average mutual information" function is defined as (3) I(E;V) = H(E) - H(EIV). This

fi
suer:c\:ionoprotvl.tdes a measure of the average information about the events E; provided by the signal
sot r?iln grE sf:; edt ;lterr;ative;y, the average mutual information associated with the process of
m the output of V. The inf t
piriic Achdeibvod nformation function is found to posess some useful and

a) I(E;V) is maximum in the case of an ideal signal set (a set which permits one ta discri-
minate perfectly between the events E;). For the ideal signal set H(E|V) = 0 so that max
I(E;V) = H(E). Such a system contains the maximum possible information and reduces the
risk of inference to zero.

b) :lgE:V) =0 in a case in which the signal set so poorly discriminates between the events

at all inferences are equilikely. In such a system the measurements of Vj have provided
no usable information about the events Ej, The minimum value for I{E;V) is zero, estab-
lishing the bounds 0 <I(E;V) <H(E).

*
Logarithms to bases other than 2 may be used but interpretations and tables of values for
o base 2 have been extensively developed, ~Abramson, 1963; Middleton, 1960 .

The notation P, , V) refers to the joint probability of event E; and signal output V.
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The function I(E;V) may thus be regarded as a measure of correlation or relationship between
the events E; and the responses V;. The quantity 1.3863 k I(E;V), where k is the sample size
used to estimate the prior probabi{mes of the events E, is in effect equivalent to the value of
chi-square that one would use to test the hypothesis that the sets E and V are independent (or
stated in other words, the hypothesis that the system provides a statistically significant amount
of information). I(E:V) may also be interpreted as a measure of the discriminatng ability of the

response set V about the events E.

Let us now examine some examples of the possible use of the principles discussed, These
examples will be limited to quite simple cases in the interests of conciseness of presentation.
however, the ideas illustrated may be easily extended to more complex situations, ’

EXAMPLES.

A) Suppose that the superintendent of a factory is considering the purchase of a piece of
testing equipment to assist in the classification of defects in the manufactured product, Further
suppose that many of the defects are correctible. From past statistical records it is estimated
that 60% of the defects are correctible while 40% are not. The piece of equipment is then sub-
jected to controlled field testing to estimate its capabilities using laboratory prepared samples
On the basis of this suppose that of samples which contained correctible defects the equipmenz'
indicated 58% of them as being correctible and 42% of them as being non-correctible. Of the
non-correctible samples the equipment indicated 16% of them as being correctible and 84% as
being non-correctible. Superficially it appears that the test equipment may not be of any spe-

cific benefit.
The superintendent feels that without the purchase of the test equipment he will have an

efficiency ratio of 60% if he attempts to have all defects comrected. The question he wishes to
answer is whether he may economically increase his efficiency if he employs the test equipment.

One may represent this problem by a tree diagram as shown in Figure 1.
E - product has a correctible defect.

E., - product has an uncorrectible defect,

2

V, - test equipment indicates a correctible defect.

1
V, - test equipment indicates an uncorrectible defect.

2
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The back probabilities may now be computed using Bayes Theorem. Bayes o

‘ Theorem states:

P(Ey) P(v,hzl)

@ PE V) = & - PE,V)
151 PE) PV, |E) P(V,)

Applying equation (4) to the dlagram of Figure 1, we obtain:

PCBIIVI) - (46) (nss) = 1348 - .s‘s

.6) (.58) + (. : 412
szlvl) = 1-P(21Iv1)= .155,

(.6) (.42) = .252 = 429

PE, V) =
(.6) (.42) + (.4} (,84) .588

2

P(E, IV,) =1 - P, |V)) = .571.

1t is thus seen by using the test equipment the probability of identifying a comectible defect
in the product 15 increased from .60 to .845, and the probability of identifying an uncorrectible
defect 18 increased from .40 to .571. The savings resulting from the increased efficiency may
then be compared with the depreciated purchase cost of the equipment, The no measurement risk
is H(E) = .6 log 1/.6 + .4 log 1/.4=.972, This is a measure of the risk taken when not using
the testing equipment and attempting to correct all defects. The one measurement risk is
HEV) = (.6) (.58) log (1/.845) + (. 6) (.42) log (1/.429) + (.4) (.16) log (1/.155) + (.4) (.84}
Jog {1/.571) = .B38. This gives a measure of the risk taken when using the testing equipment,

The information is I(E;V) = .972 - .838 = ,134,
If the superintendent has available another, perhaps better, piece of testing equipment from

a competing firm that he may purchase, he may compare the information content of the two. Sup-~
pose the tree for the second plece of equipment is represented by the diagram in Figure 2.

The back probabilities are:
P(Ellvl) = ,875, P(Bllvz) = ,244,
szl"z’ = -756:

H(EIV) = .661,

P(Ezivl) = .125:
H(E) = .972,

I{E;V) = .311.
The second plece of equipment is shown to have a demonstrably better information content than
the first and both are less risky than employing no testing. Of course a sensible conclusion
for the superintendent, if time and expense do not Interfere (frequently In complex '“"ﬂu"':‘.
this is cruicial), might be to investigate using both, 1If he did the risk would be .580 and
information ,392, The method for analysing such multiple signal sets will be discussed later,

a case in which there are only two states ol nature,
ed to a situation in which there are several states of

s of defects that need to be identified
nses which will diacriminate

Although the example is simplified for
this type of analysis may easily be extend
nature, For instance, there might be saveral categorie
and a plece of testing equipment used which attempts to glve respol

between the several types.
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B) As a second example, suppose a political scientist is interested in inferring attitudes of
individuals in a community regarding a socio-political issue, He defines, let us say, three
attitude categories: favorable, neutral, and unfavorable. He is further interested in determining
if a knowledge of available background data such as sex, race, political party affiliation, em-
ployment status and others influence the inferences and if so which exert the most influence, He
may survey a sample of individuals in the community and use the sample data as a basis for the
establishment of probabilities for use in an information theory model. He may then set up tree
diagrams for the possible relationships as illustrated in Figure 3 - depicting attitude vs, employ-
ment status.

The average mutual information may then be evaluated for each relationship, tested for signifi-
cance, and this used as a basis for determining the relative discriminating power of a given plece

of background data.
LABOR -
bimcm e CORRECT

PATTERN IDENTIFED

13

WHITE CQLAQ

4 a %
I R 2
ﬁ oD | INCORRECT NOT
D EIRBEEEER PATTERN s ICENTFED

FIGURE 3

FIGURE 4

C) As a third application, it appears feasible to employ the information theory concepts in
certain situations involving the training of persons for use as detectors. Suppose, for instance,
that in a factory persons are being trained as inspectors on the production line and are to identify
a certain type of pattern within a short time interval, A system for evaluating the training pro-
gram and for comparing the relative improvements of individuals to whom the training has been
administered is to be designed. An efficiency test of the following type could be employed. An
individual is randomly exposed to N patterns of which a predetermined number R are correct and
the remainder incorrect. He is asked to make an identification for each pattern. Suppose the
individual identified properly m; of the correct patterns and my of the incorrect patterns. The
diagram shown in Figure 4 represents his performance. The average mutual information may be
computed for this test using the principles developed and be used as a measure of efficiency.

A test may be administered to a group of trainees prior to training and a parallel test administered A PE,IVy,Q,) = .774, P(EZIVZ.QL) =.226,
subsequent to training, and the mean information gain used as a measure of training efficiency. ]
The pre-test vs. post-test information gain for an individual may be used as a measure of relative P(E IWZ’QZ) =.140, P(E,IV,.Q,) = .860,
improvement for the individual. -
H(EW,) = .985, H(EIV,Q) = .672,
EXTENSIONS, I(E:QIVZ) =,313 (Partial information of test 2 given response
V, on test 1).

Let us return now to the question raised earlier about the use of two or more independent sig- :
nal sets in conjunction for making inferences. To illustrate concretely the analytical technique The average risk for the two is evaluated in equation (5) by computing the weighted mean of
emp:oyed, consider the signal systems shown in Figures 1 and 2 and assume that the test equip- the risks from Figures 5 and 6 using P(V;) and P{Vp) as the weights. The mutual information,
39“ rep;esented by Figure 1 is used first and then the equipment represented by Figure 2 is used. I(E;V,Q), is then found as shown in equation {6).

enote the responses to these by V), Vyand Qq, Qqrespectively (interchanging the order of the ( 8) (.672) = .580

x:clig?aﬂl‘ ntt' lstimmat)erial to the results and the ordering may simply be chosen at the conven- 5) HE|V,Q) = (.412) (.448) + (.588) (. «280.

€ ol the investigator). The probabilities of responses Vjand V,may now be computed by trac-
ing all possible paths in Figure 1 leading to these r::u‘ccomes:1 pEs P Y ® 1(E;V,Q) = H(E) - HEIV,Q) = .972 = .580 = .392.

R —
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P(Vy) = (.6) (.58) + (.4) (.16) = 412,
P(V,) = (.6) (.42) + (.4) (.84) = ,588.

we construct new tree diagrams for each of the possible outcomes of test 1 using the back
N abilities PENV)). P(EpIVy), P(E\IVy), P(EylV,), previously computed.
Vv, for test 1 we obtain the tree sh
ssuming response V1 own in Figure 5. The back probabilities, '
the fjsk: and the information may be computed for this tree in the same fashion as ha: been do;:’ '

prgViOUSly: :
P(El‘vllQl) = ,96, P(levl,Ql) =,04,

P(E,1V,.Qp) = .545, PE,Y,.Q,) = .455,

H(EIV]_) = ,622, Hmlvl'Q) = ,488, ‘

I(E:QIVy) = .174  (Partial information of test 2 given response 1
V, on test 1), !

FIGURE 5

FIGURE 6

Assuming response V2 for test 1, we obtain the tree of Figure 6. The statistics for this case
are:




instance we find:
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cedure may be found in certain more uniform situations by apply-
Amthert;’;t:z::;:éot;tir:lit;ues. Suppose that one has available a relatively large reservofr
o s:qu::dent tests that are reasonably easy and cheap to apply, are approximately the same
gisicnn;rl)natlng ability, and the prior probabilities may be assumed equal, P(El) =P(E,) = .50,
It is desired to administer the tests sequentially until an inference about either E, or E%
at a predetermined significance level, say .95. The procedure will be illustrated by re
Figures 7, 8 and 9.

is reacheq
erence tg

iE |
2
. £

P(E, 1vy)

- .8 P(Ey IVy) = 94

P(EQ'V/‘.) = 2 P(EQ|V1) = .06
p(E, ! \/2) = .2 P(E1|V2) = .5
PlERI V) = B PFal V) + -5
FIGURE 7 FIGURE 8

The first test is represented by Figure 7. If the response ig V. then th
sented by Figure 8, If the response is again V, then the third tes%
If once again the response is V, then we may infer E; with a ,985 probability. Thus the response
sequence [V, v, Vlj establishes a decision within the predetermined significance level. If

on the other hand the response to test 1 is Vz then the second test is represented by Figure 8 with
the indices reversed. If now the second response is V, then the third test is represented by Figure
9 with the indices reversed. If the response to the third test is again V, we may infer E, with a

-985 probability, and the response seguence [VZ, v,, Vz] leads to an acceptable decision, If
the response to the first test is V, and the response%:o the second test is V2 then the third test is
again represented by Figure 7 andl f

rom there we see that the sequence [Vl' Vo, V., V., V]
allows us to Infer Bl « By tracing various response sequences through the given diagrams one may
establish a catalogue of sequences leading to decisions at the given significance level. For

e second test is repre-
is represented by Figure 9,

Ve  Vis Vi v, V] decide By

[vzr vzt Vll VZ, VZ] decide EZ,
["1"’1"’2"’1"’2"’1"’1] decide E

(Vye Vo ¥y, v, ¥, 1 dectde E,.
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An obvious difficulty inherent to such a sequential scheme of inference is that there is a smail
put finite possibility that the response sequence generated wil] never converge to a decision at
the appropriate significance level. So one needs to establish a maximum number of tests that may
pe feasibly measured within limitations of time and expense and if this maximum is reached choose
the best available decision. If for instance our maximum was seven tests in the current example
and the sequence encountered was [V ,V,,V 'VZ'VI’VI‘VZ] the best available decision is to

2
infer E1 with a probability .80.
E‘I —_‘—&*' V1
@ —
Y
E; 5 vy
P(E,IVy) = .985
P(EylV,) = .015
P(Es1V,y) = .8
P(E2| Vo) = .2
FIGURE 9

ADDITIONAL CONCEPTS OF INFORMATION THEORY.

The total information from all sources of a system such as those described may be computed by
H(E,V) = H(E) + H(V) - I(E;V). The "equivocation” of the system may subsequently be computed as

(7) Hyl(E) = H(E,V) - H{V)

This gives a measure of the average amount of information about the events E that is unrelated
or unpredictable from the responses V. The "noise" of the system is

® Hy(V) = HEV) - HE)

The "noise" may be interpreted as the average amount of information resulting from the responses
V that is of no value in discriminating between the events E,

The ratio of the information to the noise, %@7‘%;—, is often referred to as the "signal to noise*
E

ratio and is a useful comparative measure of efficiency or discriminating ahility of a discrete

response system in that a good system should have a relatively high information content and a
relatively low noise level,

A characteristic of information systems is that usually there is an upper Iimit to the amount
of average mutual information I(E:V) called by communication engineers “the channel capacity* C,
C measures the ultimate predictability or discriminating ability of the system. C may in certain
regular situations be calculated analytically; in other situations, however, it i{s only practical to
estimate C by numerical methods, [ Reza, 1961 ]
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The error probability of a Bayesian decision rule as outlined in this discussion may be comput.

ed by
P,=1 - ax |P(V, | E P .
) b ?mi [Ptv, 1 E) PEE))
Using error probabilities one may establish upper and lower bounds for the information I(E;V) for

such a system. [Chu and Chueh, 1966] . These concepts may provide useful results in certain
applications where one would like to establish a feasible range for the discriminating power of

an information system.
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