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INTRODUCTION

Wo shall discuss some metrio relationshipa whieh
characterize certain hypersolidy of » dimensions and
result in some well-known elementary formulas being
recognized as special cases of mueh more generalized
forms. For instance, the perimeter and area of an
equilateral triangle, as well as the surface and volume
of a regular tetrahedron are four of the specific cases
which are obtained from a caverall relationship,

THE HYPER-CURE}

The definition of this solid is obtained by following
an iterative procedure, Start with a point, a O-dimen-
sional entity. Apply straight line motion 10 it aver
distance of @ units. Then its trace forms a line segment,
a l-dimensional magnitude. By moving this line segs
ment out of its I-dimensional space in a direction
perpendicular to that space over @ units a square, a
2-dimensional element, is obtained. Similar motion of
the square creates a cube, a 3.dimensional manifold,
Likewise with the cube, a tesseract (the 4-dimensional
hyper-cube) will be formed. Continue this process
indefinitely and it will lead to a set of hyper-cubes of
n dimensions, where ¢ 10, 1, 2, . . .}

Relationships:
1, Number of boundary manifolds:
LR [;‘] ()

wero () el e

Since n means the dimension of the solid under con-
sideration, and { reprosents the dimensionality of the
boundary manifold in question, 1 > n.

Proot;
To obtain relationship (1), note first that, owing to

the definition of the n-dimensional hyper-cube, the re-
currence formulas

[:] = 1 whenever b = 0,

(1) Multiply both sides of (a) by zn-i , and
rewrite the resulting equation as
zn-i[n] on=1-1{n=1 n=1-(1i-1) [n-1
i) =22 i) +2 1-1).
This, however, becomes interpreted as:

M“‘i - 2Mn—1,:|. + Mn—l.i—l'

108

n>0 (0)

Ml'nb - aMn-l.O =2 J

Nc.o -1

hold. These formulas enable one to construct Table 1
n-l]

quite rapldly,
- () () + o,

But
as may be seen from the definition of these symbols,

Superimposing this relationship on formulas (0), re-
lationship (1) results, (1)

Formula (1) may now be used for some specific
values of n and { to obtain a whole array of otherwise
unrelated facts: a line segment has two points as its
extremities (M, 4=2); a square has four vertices
(Myy=4) und four edges (M, =4), and a cube has
eight vertices (M, y=8), twelve edges (My,=12) and
six faces (My ,=6),

2. Relationships among these manifolds:
An horizontal summation in Table T results in:

n
T M n
img

= 3 (2)

n,i
Proof:

Explicitly stated, relationship (2) shows that
oo ¥ M1 e R H

or—according to (1)—

n-an'

2+ 2%l b e gt [‘i‘] b 2[‘:1] +1 =3

However, since the left member of this st&rzitement
represents the binomial expansion of (2 + 1) , the
conclusion follows immediately.

3. Euler's generalized relationship:

In 3-dimensional space, V, the number of vertices,
E, the number of edges a;ld F, the number of faces of
any solid are interconnected by the well-known Euler-
formula

V+F-E+2
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This law, which—in our terminology—reads
=M + 2,
My o ¥ M3 = "Ea

can be generalized, at least in the case of hyper-cubes.
It becomes:

n
3 (-1)iun’ =1 o
Proof:
In detail, (3) states that
x"‘c " "n.l. i “u.z - "n.l F aiwend: ('D'!n,i PO

Similar to the above proof for equation (2), this
means that

+ DN L

=N ke (—1)12““1['1‘] ek (D=1

Since the left side represents the binomial expansion
of (2_1)“’ the proof is established.

4. Lengths of hyper-diagonals:
The relationship
Ppi =@t )
where D, ; is the length of the i-dimensional (hyper-)
diagonal of an n-dimensional hyper-cube, is immediately
obvious. It is stated here for completeness’ sake.
5. Hyper-volumes:

From the definition of (hyper-) volumes, it is clear
that

N B i
0t "My s Vg s L £

With the help of relationship (1), this may also be
expressed as

Selecting some specific values for i and m, all of
the following become special cases of the above:

A line segment (of length ) has 2 vertices (V;,6=2).
Its length is a (V;=2a).

A square (whose side is a units long) has 4 vertices
(Vs 0=4).
Its perimeter is 4a (Vo ;=4a).
Its area is a? (V,,=a?).

A cube (whmeﬂ'deisannilslmg) has 8 vertices
(V3 ,=8).
The total length of its edges is 122 (V;3,=122).
Its surface measures 6a® (V,,=6a®) and its
volume cootains 2% cubic units (V3 3=a?).

6. Circum-and inscribed hyper-spherest2)-

\M
It is immediately seen that
Dn,n - a/ﬁ
Ba™" 2 2
and ©
= 2
™2
and, thus,
R g—
L = vn (6 a)
r

n

where R, and r, represent Ehe lengths of the (hyper.)
radii of n-dimensional circum- and jp. (hyper)
spheres (2), respectively.

The lengths of the circum- and in-radius of 3 Square

of side a), known to be

and ——

2 -Tespec.
tively, and the lengths of the radii of spheres circum-
and in-scribed about a cube (of side a) as

av3 a .
) , or else T » are now special cases,
As a corollary of (6a), the ratio between the

hyper-volumes of the two respective hyper-spheres is
given as

a/2_ a
2

vcj_rc\msuibed hyper-sphere 'Vnn (6b)
vinscr:l.bed hyper-sphere

This is an immediate consequence of the fact that—
if two linear measurements of two (hyper-) solids have

ratio I' the ratio of their n-dimensional measures
i n

S

The Regular Hyper-Tetrahedron:

Start again with a point, i.e., an element of a point
set of dimensionality zero. Take this point out of its
space over a distance of a units to produce a line
segment, a 1-dimensional configuration. It is defined
byﬂleol‘iginalandthenewpositionofthepoifﬂ-
Locate the center of this line segment. At this point
erect a line perpendicular to the line segment and such
that its endpoint be a units from the extremities of the
given line segment. This forms an equilateral triangle,
aZ—dimensinnalentity,deﬁnedagainbythel‘WOﬂ'
u‘emiﬁesofthelinesegmemandmeendpointofﬂl.e
perpendicular. Find the center of this triangle. At this
Poiﬂtdra"apetpendicula:mtheplaneofﬂleeqm'
lateral triangle and such that its endpoint has a distance
of a uaits from the vertices of the given triangle. The
3-dimensional solid created in this manner is a regula?
m_hedron,nniquelydetumimdbyitsverﬁmm
obtain the center of this tetrahedron, using it 2 b
footpoint of 2 line perpendicular to the 3-di
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space of the tetrahedron and of such length that‘ its
endpoint has a distance of a units from the vertl‘ca
of the regular tetrahedron. So we ha\rt:, a regular sim-
plex, a 4-dimensional hyper-solid, which corresponds
to the tesseract in the former sequence of hyper-cubes.
This process is repeated indeﬁm!.ely for the further
members of the set of n-dimensional regular hyper-
tetrahedrons.

Here. the recurrence formulas

0
M =M +M Tl ol
n’i n—l,i n“lyi_l n Z. i
M o=Mnlo+1‘n+1; n>0 (¢)]
T, =4y
Mc.),ca=

which translate the definition, are used to set up
Table 1L

Relationships:
1. Number of boundary manifolds:
_|n+ 1
Moi T [1 + 1] (8)
Proof:

Similar to formula (1), (8) is based on

B) - )+ )

which may also be symbolized by

ntll _ | n + B

i+1) — |ivl i °
Combine this equality with recurrence formula (7),
and statement (8) results. (3)

Choosing specific values again, our theme re-occurs.
This one relationship encompasses such facts as pertain
to the number of extremities of a line segment, the
number of vertices or edges of an equilateral triangle,

and the number of vertices, edges and faces of a
regular tetrahedron.

2. Relationships among these manifolds-

Applying horizontal summation to rows in Table 0,

ashadsimilaﬂybeendonetoTableI,itmaybe(fs—
cerned that

T =2,y )
i=o >

Proof:
The left member of (9) reads

-_—

{3) Interpret [:ﬁ] s L [1:1 asu g oesd [:} =Y
4. While the iteration only starts with n—2, (b, is ua-
defined) relationship (10) is valid for all natural oumbers n.

M +M ces wee
o F My v M o+ W, & M

Or - according to (8) -
s3]+ )

But the right member of (9) is

o) sy
+[1]+ +n+1].

a+ ™
which - upon using the binomial theorem - becomes:

[1 + (o#1) + [“;1] + e [“Il] & weel g [:ﬂl -1,

and, hence, conclusion (9) follows.
3. Euler's generalized relationship:

g ocohy -1 &)
holds here also.
Proof:
The left side of equation (3)—utilizing formula (8)
—reads:

o= (2] 3] o+ o] o o)
Eow chserve that

r
0-0-D™ 1@y L";ﬂ, - s (—l)'T';’} e (-1)'“[:}1‘

This, however, causes the above expression, the left
side of (3), to equal 1.

4. Hyper-heights:

Limit the discussion to n-dimensional hyper-heights
of n-dimensional regular hyper-tetrahedrons, symboliz-
ing them by h,. This does not affect the generalization,

since

Then, hnni - hi’i.

-\ - ¥
Proof:

On the basis of the definition of these hyper-solids,
the following observations may be made:

B - a2
52
2 2 a
by = b -—3— = nT WA
2
2
3 2 B a
- e ——— - (8-3)(2-1)
by by ] an?
2
2
2 i a -3} (3-2-
B = h) = Ty ¥ —2—(543)(321)

1)

applying mathemarical indectiocm,

2 2 Ly 2 @) )
B = b, - ‘; - -2 3 5 (=-1)1
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and—thus—relationship (10) is justified. .
Furthermore, one formula establishes hy, the height

of an equilateral triangle as %V}"‘““hz’m
(3-dimensional) height of a regular tetrahedron as
a

3Ve .

5. Hyper-volumes:

First, we show that V. the n-dimensional content
of our regular hyper-tetrahedron, is given by:

-]

)
v - S\ | 1™ an
=@ al Fe !
Proof:

For the first equality of (11), an inductive procedure
is wsed. It is evident that

1
117 T %N 7t

2
2,2 = %'1,3."1 "';'—ﬁ:z

3
1 § ¥
Y33 T 3 VM T w vz’
o
1 a k#l
Tk T T L™ T W V *

will be assumed cotrect. Them,

Ves1,e01 o Ve P < ﬁb—k\l;’: o1 d (‘:z]

2541
- For\E . e

Fcrﬂaenoondequaﬁmlputof(ll),merdation—
ship (10) to form

L3
s! i=1

y -
It becomes:

Gn? VL:#L:""%IE-E:I - :: %l <
which equals V, .

Pllrlbem_nom, \_I... the i-dimensional (hyper-) content

of our n-dimensional obeys the law that:

i 1
o a 141 a1
’l.l i 2t = [gﬂ, ;| : (12)

Vot = % %,
Proof:

The first part of this continued ion utilizes the
follow by substitution from (11) and (8).

— . n
edges, a surface of 326 Mav%"t

83/2_ (by oomp‘uﬁng VM fori = 0, l’ z’ 3.)
12
6. Relationship between hyper-volumes ang hyper.
heights:
It may be interesting to note that

n,n n (11a)
which combines some previously established resyjys.
7. Circum- and inscribed hyper-spheres:
(a) Relationship between hyper-radii and hyper-
heights:

n-1 ,n—-lhn

n
Rn T ntl hn
RN a1,

rn - ntl n
wbereR,andr.symbolizethehym.mdﬁ
of the n-dimensional circum- and inscribed
hyper-spheres, respectively. Thus,

Batm = B (13a)

Proof:

(13) may be proved by mathematical induc-
tion, starting from the initial observation

h h,
hatry =3 adr;=—— m

like manner, R, is found.
(b) Relationship between hyper-radii and sides:

= \ /_L_
Bn A\ 2em

a (14)
rn =z —
/2n('n+1)
and
Rn
_n = g
- ‘ (14a)
n
Proof:

(14) may be recognized quite readily by using some
of the carlier relationships ((13) and. (10)). (143)
follows from combining both forms of (14). :

This generalized relationship enables us to obtain
&theim radii of the circum- and in-circle of our equilateral
- a’3

2' 3 8“:28-3—6/3-—, as well a8

| o —
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- ‘j,efadﬁo’fcircum-andinsaibedspheraofmntm-

__alk

_ _a/6
hedmnasg:,’. % and Iy =45

12 ¢
Corollary:

The ratio betweén the volumes of the two respective
hyper-spheres is givzlbn by

4
vcircumscribed Hyper-sphere n

=n (14b)
v

inscribed hypef-sphere

Proof:

The reasoning i$ analogous to the proof for (6b).
This points up a very rapid increase in this ratio for
higher and higher'dimensions. Thus, although the area
of a circle cir ibed about an equilateral triangle
is only 4 times astlarge as the area of its in-circle, the
hyper-volume of in hyper-sphere circumscribed about
a regular simplex is 256 times as large as the hyper-
volume of the in-scribed hyper-sphere. 5)

—_—
(”'ﬂwveriﬂutiono(thismtement,howm.exmdslhe
'WI’GOfthupaper It entails the re-
lationship for the hypervolume of an V. =

n n
_B-dimensional hyper-sphere. Y1)

AL

TABLE 1

Mu.i=the number of i-dimensional boundary mani-
folds of an n-dimensional hyper-cube; i=n.
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TABLE 11

Mu,i=the number of i-dimensional boundary mani-
folds of an n-dimensional regular hyper-tetrahedron:
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