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INTRODUCTION

Let F denote a meromorphic function, and consider
the fixed-point problem

(1) F(z) = z.
If for arbitrary complex z we construct the sequence
{zn} defined by

(2) % =2z 2= FY2) n=12...)
where F* denotes the n-th iterate of F, then the follow-
ing facts are well known:

(a) If the sequence (2) converges to a finite point
€, then § must be a solution of (1).

(b) Under a suitable hypothesis on the form of the
analytic expansion of F about one of its fixed
points €, the sequence (2) converges to ¢t pro-
vided the starting value z = z. is taken suffi-
ciently near §.

(c¢) If F has the form

(3)  F(z) = z—f(z)g(z),

and if € is a finite fixed point of F, then ¢ is a
root of the equation

(4) f(z)=0
provided g(t) + 0,

Remarks (a) and (c) are obvious, and (b) is formu-
lated as Theorem 1 of section 2. We refer the reader

to Hochstrasser [4] for a more complete discussion of
these matters.

It has been noted in various connections that an un-
fortunate choice of a starting value in (2) may produce
a divergent soquence, A familiar example i Newton's
method (g(z) = 1/f(z) in equation (33) and the en-
counter of a singularity of F' (f(z.) = 0 for some n),
In fact, the convergence of Newton's method on the renl
axis and in the complex plane hus received careful

uttention in recent yeurs (see, for example, the pupers
of Gorn [3] and Barna [1]).

sets C(t) of starting values for the finite fixed
of F and in particular with the set D of P
divergence, that is points z for which the sequence
(2) diverges or ceases to be defined at some
Under combinations of the assumptions (I) and (1)
of section 2, we shall prove that

In the present paper we shall be concerned with, g

points ¢
oints of

stage.

(i) the convergence of the sequence é F "(z)} is uni-
form in any compace subset of C(t);

(ii) an isolated point of D must be a pole of F* for
some 1,

(iii) a pole of F" is an isolated point of D if and
only if the set D — 4 o0 } is bounded.

Since we shall see that D is closed in the topology of
the extended complex plane, we note that (ii) and

(iii) furnish a sufficient condition that D be a perfect
set.

FUNDAMENTAL ASSUMPTIONS; ThE CLASSICAL
CONVERGENCE THEOREM,
Throughout the discussion we shall assume that the
function F is mermorphic. We shall also have occasion
to assume that I has one or both of the following
properties:
(I) F has a (non-removable) singularity at in-
finity.
(1) About each of its finite fixed points ¢, F has an
expansion of the form

(5)
Fa) = + Z:_I a, (6 = &) with |ag| < 1.
Ritt [5] gave the name point of alttraction to my

point & about which an expansion of the form (5)
valid. The clussionl local convergence theorem is

Trwomin 1,0 & is a point of attraction of T, there
extats an v > 0 such that the sequence (2) converges to

Points of Divergence for the Iteration of Meromorphic F i
nc

¢ for svery 7 satisfying | 2 — L] <=
FOr proof see [4]'

X that if € of Theorem 1 is sufficiently
e et i 1 gt "
small, the 1, 2, . . .). This implication may be derived
<E (1:}1;’ es'ﬁ,,;ates used in the proof of the theorem

will be needed in the discussion of the uniformity
i‘? the convergence.

cessary remark is that if F has property

A S:},c:zi:;‘ C(t) is an open set. For by Theorem 1,

(l(B’containS an open disk N which contains t, We
C(t

may write

n=1

F denotes the inverse of F*. Since F" is contix}u.
Owuhse:; C(t) for each n, F™(N) is open; hence the union
(B) is open.

It follows that if F has property (II), D is a closed
set.

UNIFORMITY OF CONVERGENCE

oreM 2. If F has property (1) and if € is a point
Of?t{t};:'action of F, then the convergence of {Fu(z)} is
uniform in every compact subset of C(t).

Proof. We first note that the assumption of property
(1) implies that oo & Dj hence for subsets of C(%) the
term compact is equivalent to closed and bounded, Let
us assume, therefore, that the convergence of {F*(z)! is
not uniform on some closed and bounded subset S of
C(t). Then there exists an & > 0 with the property that
the subsets S» of S, defined by the inequality

| Frz)—t |z e

are nonempty for infinitely many n. Without loss of

generality we may suppose that e is small enough to
insure that

(7) |z—-—-t|<elmplies|F(z)-—ﬁ|<B
(see the first vemark following Theorem 1).

Bocause each 8y, Ceft), thero oxints an incroasing sequence
(n¢) of suffixes with the property that

'"‘l‘ @ and IH‘D 8 [ 2008 PR PRETSRY]

M
where the inclusion s proper. If we choose

w e§ —§ (i=12..,)
i n n
i P41
the sot of points {wii=1,2,, 4 18 hounded and
infinite and thus has « limit point w ¢ 8,

Sineo w e C(5), here extite wn m such thal [F™(w) —
Y < e By continuity of I a, euch 2 i entire
;luluhlmrlmud N of @ must sathfy (I(z) =t < s, und
hence, by (7), we must have
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(8) | Pt

for every z & ,

'(Z)-—;](B (P"—"O’I:"')

contains p, f infinij Choose
such that 4, ¢ N ancll n?r> m, t;,})); :azy 1: :
- m we
e - ) =8| = | Py g =,
€ last inequality ; iti 1
e or:l o:( 8y)-xs by definition of Sat. This is a

e be IsoLaTep Points or D
© begin our discussion of isolated po
i&mg that the points of any two disﬁr?c:“é;sn\?;gDenz
are separated from each other by points of D,
THEOREM 3, Let F have

C Pproperty (11},

Ex _I_)eodl;tﬁ;ctnd ﬁg:eyfi‘a)ced points of F.(Su)pp‘:x l:t zLCafgf
=V, 4, e ‘"’uou‘ 3
POInts z. and z,, Then :tnga & i

ast one point of D ligs on, v,
Proof. Represent y Pparametrically by
Z=®),0=ts1, where 2 = N0), 2 = ®(1),

Lett = sup{t e [0,1] ; @) e C(ts)}. The point & (v)

:sefasilyseenmbelongtoDsinceeachC(t)h an open

We have now laid the groundwork for

THEOREM 4. Let F have properties (1) and (1),
If w is a finite isolated point of D, then (u i5a page 3}
F* for some n.

Proof. If « is an isolated point of D, one easily shows
by' applying Theorem 3 that there exists a deleted
neighborhood N’ of « which is entirely contained in
C(%) but which excludes o, Let 28 he the radius of N,
and let v denote the circle of radius b with center «
We shall denote by M the disk of radius ¢ > 0 with

center ¢, and we shall suppose that ¢ has been chosen
sufficiently small that

FOM)C M C L),

We now prove the following: If for every n F'(a) Is
defined and finite (and hence F* is analytic at each
point of N’ U {a}), then the sequence {F*(a)} con-
verges, contrary to the hypothesis of the theorem. It
suffices to find one value of n such that LI;‘D(:) -
< ¢, Since v Is n compact subset of C(t), ¢ n such
that |F*(z) — §f < ¢ for euch z ¢ v. Using Cauchy’s
integral formula, we obtain

[P"a) - ¢] » l;h 4%‘“? & {'.'u'”

sk {Wl‘.l.#;....,,

1t follows by contradiction that o must ha a singu-
lurity gl’ " fur’:mma m, 1f u were un essonthul slngnlarity
of 17*, then o would Lo o pole of I** slnce I is mero-
morphic. "This completes the proof.



120 Iowmlof‘h'TWAmofs

We shall need the following lemma from the theory
of functions (see Dienes [2, p. 246]) for the proof of
Theorem 5.

LlMMA.IfG‘smwlyﬂcattheﬁnﬂepoint"s“"d‘f
G(a) = 0, then there exists a function H, which is
analytic at 0, and an integer p = 1, such that

(9) H(0) = «
and the equation
u = G(z)
is solved by the relation
z = H(*Vu)

for all u in a sufficiently small neighborhood of 0.

THEOREM 5. A finite pole « of F* is isolated from D
if and only if D — {0} is bounded.

Proof. Write G(z) = 1/F*(z). Then G satisfies the
hypotheses of the lemma. If D — { e} is unbounded,
selectasequence{&}, Bie D —{ « }, with lim

-0
Bi = . If wi = 1/ and z = H(*\/us), then the z must
cluster about a. But F*(z:) = 1/G(z:)= 1/w = B, which
implies z ¢ D. Hence a cannot be isolated from D.

On the other hand, points of D which cluster about
@ have images under F* which cluster about .

ExXAMPLES

(i) F(z) = 1/z. Assumptions (I) and (II) are both
violated. The only fixed points are ¢ = =1. The sets
C(1) and C(-1) consist of the single points I and —I
respectively, and every other point of the extended
plane belongs to D. Here D is open and C(1) and C(-1)
are closed.

(ii) F(z) = z*. The points 0 and I are the only finite
ed points. The point 0 is a point of attraction, while
I is not. Since F*(z) = z*, where k = 2", we have

) n 0 if |z]| < 1
lim ,  F"(3) =

© if |z] > 1.
Hence the interior of the unit disk is contained in C(0),

and the exterior is contained in D. If n > 1, the fixed
points of the function F* are 0, I, and the non-real

—_
(2* — 1)-th roots of 1. Each such root “h‘“thep,
erty that op-
F(o) # ®

and

m:F“(m):F"(m)=_”
Hence o ¢ D. Such points of D have been
cyclic points (see Gorn’s introduction [3]), Thesg pczlxlnetd
are obviously dense in the unit circle. S

Every solution of the equations
z¢ — 1 = 0, where k = 2" (,‘:1’2’”)

is an element of C(I). These points are also dense i
the unit circle. It follows that the set C(1) is not ¢

for its closure contains cyclic points; neither is it

for every neighborhood of each of its points containg
points of C(0). A similar remark shows that D js neither
open nor closed.

We finally note that the conclusion of Theorem 3

does not hold for this example: the unit interval cop.
ts the two fixed points and contains no point of D,
(iii) F(z) = (2/3)z + 1/(32). This is the Newton

transform of the polynomial f(z) = 2* — 1. The finite

fixed points of F are the three cube roots of I; each of

these is a point of attraction, so that F has property

‘(’fu). Moreover, F has property (I) since o is g pole
F.

We note that 0 € D. It is not difficult to show that
if a = 0, the equation
Fiz)=a
has one real root @’ < a. If the real sequence {ea} is de-
fined by the formulas
F(a.):O,
one may prove that lim

F(ﬂaﬂ) = Un,

a = oo, HenceD—{oo}
Nn—o0o n

is unbounded, and it follows from Theorems 4 and 5
that the set D is perfect.
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