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Fig. 3. (a) Space-time diagram where plot sequentially describes

A, B, C, (on voyage), B, C, (on return), etc. (b) Diagram where A
and B discuss a voyage recently completed by C and then converse
about the similar part of a trip previously made by B. Dash-dash lines
in (b) represent flashbacks. (c) Diagram where C has promised to
sell some land (shading stands for promise) to B; the promise stands
unaffected by a “crossing of the ways”, during extended discussions
with A, and for part of the return jourmey; repeated reflections on
a part of the conversation lead to correspondence, however, which
ultimately secures B’s release from the promise, A’s agree;nent to
purchase, and C’s death from the strain at an intermediate point.
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ABSTRACT

- Inite difference equations for plates with in-plane edge loadings
are derived from an analog model of the plate. The critical buckling
E&d is obtained for a square plate with two interior stiffeners to
m“’““e, the use of the model. The effects of both the flexural rigidity

torsional rigidity are included in the analysis.

INTRODUCTION

In recent years there has been increased research in
ana]y?_ing plates using finite difference techniques.
Considerable progress has been made using finite dif-
ference techniques combined with an analog model of
a plate. The advantage of the analog model becomes
apparent when difficult boundary conditions and dis-
continuities are encountered for the plate.

m model used in this paper is an ex-
tension of the model first suggested by N. M. Newmark."

The plate analog has been used extensively by other
investigators. In particular, the work of A.H.-S. Ang
and W. S. Prescott™® will be referred to repeatedly in
this paper. Ang and Prescott have extended the work of
Newmark to include the effect of transverse stiffeners
in a deflection analysis. In this study, the application of
Newmark’s plate analog has been extended to include
the effect of in-plane edge loadings. The analog model
was then used to derive equations for determining the
stresses, deflections or critical buckling loads for the
plate. Ang and Prescott’s plate model has been used
to evaluate the effect of plate stiffeners on the critical

buckling load.
Notation: The terms adopted for use in this paper are

defined where they first appear in the text and are
listed alphabetically.



DerivaTioN oF EQUATIONS

The differential equation which expr
flection of plates in terms of lateral and in-
has been derived by Timoshenko and Gere* as

esses the de-
plane loading

4 Ngwaxy © Nywayy * Myywsxy /D

(1)

Waxxxx t DWaxxyy + Wayyyy = (9

where a comma followed by a variable represents partial
differentiation; also, w is the deflection, q is the lateral
load per unit area, N« and Ny are the in-pl:mf: forces
in the x and v directions respectively, Nu is the in-plane
shear force and D is defined as follows

. Et (2)

12 (11— '

where E is Young’s Modulus, t is the thickness and v is
poisson’s ratio.

The finite difference equivalent of Eq. (1) can be
obtained using the plate analog shown in Fig. 1. The
plate has been represented by a physical model com-
posed of a network of rigid beams connected at the
grid points by elastic hinges. The parallel beams are
connected by torsional springs to represent the twisting
moments and linear springs to represent the in-plane
shearing forces. The physical model is assumed to have
the following characteristics;

(1) The beams are weightless and rigid.

(2) The traverse external loads are concentrated at
the elastic hinges.

(3) The resultants of direct stresses are bending
moments acting at the elastic hinges and at the ends of
each beam.

(4) The resultants of the vertical stress are shearing
forces acting at the elastic hinges and at the end of
each beam.

(5) The resultants of the horizontal shearing stress-
es are twisting moments concentrated in the torison
springs.

(6) The resultant in-plane stresses are horizontal
forces acting at the elastic hinges and at the end of
each bar.

(7) The resultants of the in-plane shearing stresses
are in-plane forces concentrated in the linear springs.

Interior point

Figure 2 shows the forces and moments acting on a
typical interior elastic hinge and adjacent rigid beams.
The finite difference operator will be derived by first
summing the vertical forces acting on joint “O” as
follows

Voe = Vow - Vos * Von + Q=0 (3)
Equation (3) may be expressed in terms of moments

and in-plane forces by summing moments about the end
of each beam which connects to joint “0” and substitut-
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. into Eq. (3). For example, summing the
:]tin;? end “e” of beam oe yields Moments

A - B +h" dH .h '
hVoe=Mex'"ox*‘“x.V Mxy oe 7loe 5""%.

h dw
“Z Ngy EFIA (4)
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where M and N represent the total moments and in-

lane forces acting across a grid width and are as
Pown in Fie 2. h is the length of the beam and

dw indicates the slope to be evaluated along beam

oe
oc. In writing Eq. (4) it has been assumed that the
o dw dw -
dope is small, i.e. sin - = =~ —7-. Substituting mo-
ment equations into Eq. (3) and assuming that Noe =
A B

w = Nx, Non = Nos = Ny and Nxy = Nxy
c D

Nxy = Nxy = Nxy the following equation results.

.-

Z.

[

i

A B €
u,,-zﬂonmx*“nr'mor*"sy*"’("xy-"xy*“w-ﬂe,v}-

- [Q + hNy (:%

v dw dw
oe dx|w) + iy (E_ﬂos T dy on) (5)

dw] 'dw| dw| dw dwl o dw dw
AT dylA T dx|B " dy|B - dxfc tdyjctaxo tayp) ]

h dw
+ 3 ny (dl

Equation (5) may be written entirely in terms of de-
flections by substituting the appropriate finite difference
approximations for the moments and slopes. For the
typical joint “0” a few examples are as follows:

o = = Oy By = g + Mg ¢ (g = 2 + W5)] (6a)
d _We - Hg dw _Hp - M
aﬂoe = E'O,,' . n (6b)
For a typical panel area “A”
Hiy’%?[un-ﬁne*ue-\ic~ (Wn - Wne + We - ¥o)] fral
dw =‘|. W, Wy + W,
M =1 et Ve Yn Yo, e
dwl _1 Mot We Wy
HF‘A § o - T e e

The left hand side of Eq. (5) may be represented by
ﬁm_ familiar fourth order finite difierence operator®
while the right hand side reduces to the following:

: ] =
Q+ By a] H+Hy -2 Hmy ‘[ W op. m
1 =

—

Operator (1) when used with the bi-Laplacian operator

ﬁl;—h‘ equivalent finite difference expression for

bc:\n hat follows the operators obtained by summing
maﬂdtwisﬁ.ngmomentswﬂlbereferredtoas

“Operators and the operators derived from the in-
Plane forces will be referred to as N-operators. For the

. g derivations it will be assumed that Nxy is

Operators for Stifiened Plates

The If/l-operator for a point on an interior stiffener
was derived by Ang and Prescott® as

L ry

-8 2

(1+H)  -(8+8H)  (2046H) ~(34BH)  (1+H)

W 0p.(2)

1

2

|
+8

-8 >

1
— —

where H is a measure of the flexural stiffness of the
plate stiffener, defined as

H = EI/Dh (8)

The N operator must be derived in terms of the ratio
of the in-plane force acting on a stiffened grid to the
in-plane force acting on an unstiffened grid as follows:

P/N = (ht + A)/ht (9)

where h . t is the area of the plate along a finite differ-
ence grid, A is the area of the stiffener and P is the
in-plane force acting on a stiffened grid. From Eq. (9),

P=(1+A/Mt)N (10)

hence, the Nx— operator for a point on an interior
stiffner is

=
!.
ny
]

(1 + A/ht)Ny T W 0p.(3)

Operators Related to Fictitious Points

Operators relating fictitious points due to the presence
of stiffeners to other points on the plate have been
derived previously** and will be included for the sake
of completeness. The torsional stiffness of the stiffener
will create a discontinuity at the junction between the
plate and stiffener. The operator can be developed from
the curvature expression as

K

Op.(4)

[ RS

where the numbers inside the boxes refer to the fic-
titious points required for equilibrium.



2

Equilibrium of moments about an axis of the beam
vields an additional operator

i =2 'r-J/" )
L2t

- -

L=

J/2 -J J/3
7

] 3

where J is a measure of torsional stiffness of the stif-
fener defined as

GC
J=pn
APPLICATION

Analysis for Critical Buckling Load

To illustrate the use of the operators which have
been presented the critical buckling load will be calcu-
lated for a square plate with two longitudinal stiffners.
The plate to be analyzed is shown in Fig. 3. Writing
a finite difference equation at each grid point on the
plate will result in a matrix equation representing the
coefficients of the finite difference equations and the
unknown deflections as follows:

[S] [w] = (Nx [A] [w] + Ny [B] [w] +
Nxy [C] [w]) h/d (11)

where [S], [A], [B], and [C] are the coefficient matrices
and h is the finite difference grid spacing.

For this illustrative example it will be assumed that
Nxy is zero, and that Ny is either zero, one half of Nx
are equal to Nx, hence Eq. (11) may be written as

h?
(S w1 =Ns [ 141+ o8] | D) -

or
[S] [w] = Nx [D] [w] h¥/D (12)

The solution of Eq. (12) to obtain the critical buck-
ling load has been discussed previously; for instance,
Salvadori® has illustrated a technique for analysis with
a discussion of the error involved. Kapur and Hartz’
have discussed the solution of Eq. (12) in conjunction
with a finite element analysis for the buckling problem.
For the example problem to be presented, the presence
of the fictitious points in the plate will develop finite
difference equations in which zeros will appear along
the diagonal of matrix [D]. Additional matrix opera-
tions® will be required to reduce the matrix equation to
the standard form.
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Figure 3. Finite Difference Grid for a Square Plate
with Two Stiffeners

A 24 x 24 matrix results when an equation is written
for each grid point of Fig. 3. The points inside the
dashed boxes are fictitious and the [D] matrix of Eq.
(12) will have zero elements along the diagonal for
elements corresponding to points 17 through 24. Oper-
ator (4) was used for points 17 through 20 and Op.
(5) for points 21 through 24. Equation (12) should be
partitioned as follows

AR |

-
—
purt
1
=
o
R

wi 011---.01 0 Leeens W]

Wigl = h2ny

é‘ﬁ 1 D16 186 wig (13)

I
!
1
I
1
1
e e e
1

’

__524] ........... :324 é4_ I | s []J L]

Both matrices have been partitioned along the row and
column which corresponds to the first zero diagonal
element in [D]. Rewriting Eq. (13) yields

S.W :5“ D T
. 2 :
— = == wl = KNy B
-l (14)
St | St R I: o
pu | N

The original 24 x 24 matrix may be reduced to a
16 x 1(? matrix corresponding to the equations for the
real _g"ld points which lie on the plate. The resulting
matrix equation is

[0 - 5100 £s7” (5112 | 01 = B2 w103 [l (15)

In order to obtain the lowest eigenvalue for Eq. (15)
using matrix iteration it will be necessary to multiply
by the inverse of the matrix on the left hand side and
divide by Nx.
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buckling loads were obtained for various
ons of H, J and stiffener area. The results are
Tables I, 1T and IIT as the value of K to be
the following equation:

Critical
combinati

shown in :
substituted in

K+ D

(Neder = T

(16)

jportant result of this study is the evalua-

most 111
e Fect of the torsional rigidity on the critical

tion of the e

buckling load. As can be seen from Tables I, II and III

the effect of increasin i
g the torsional rigidity i :
crease the critical buckling load. By o de

. ":[‘a.ble IV shows the effect of including the torsional
rigidity of the stiffener when the in-plane loading is
normal to the stiffener. When only Ny is considered

T_he critical load decreases as the torsional rigidity
increases.

TaBLE I

CrrTicAL BUCKLING LOADS FOR A PLATE wiTH Two STIFFENERS AND Ny = 0.
VALUES oF K To BE Usep v EquaTion 16

—
EI/bD 25 5.0 7.5 10.0
N
A
;. .01 .05 | .01 .05 1 .01 .05 1 .01 03 o |
t
JjC
—=0 | 10.88 9.79 8.69 | 17.57 | 15.89 |14.17 |23.93 |21.73 [19.46 |29.96 |27.33 |24.58
bD
1 9.45 8.51 7.56 16.13 | 14.59 |13.01 2248 |20.42 [18.30 |28.51 |26.02 |23.40
2 9.18 896 | 7.34 | 1587 |14.35 |12.80 |22.22 (20.18 {18.09 |28.26 |25.78 |23.19
TasLe II
CrrticaL BuckrLinG Loap FOR A PLATE wiTH Two STIFFENERS AND Ny = B5Nx.
Varues ofF K To B Usep 1n EQuaTioN 16
EI/bD 2.5 5.0 75 | 10.0
A |
_ .01 .03 | .01 .05 sl .01 .05 o | .01 .05 il
bt
IC L2 an
“_o | 730! 680 | 626 | 11.67 | 1093 [1011 | 1561 | 1472 |13.71 |17.15 |16.95 °
bD
1| 645! 599 | 551 | 1099 | 1025 | 945 | 1535 |14.34 |13.25 ° sss 117,10
s | 630! 585 | 538 | 1089 | 1016 | 9.36 | 1533 [14.30 [1321 | ° [1888 |17.09
TasLe III
CrrticaL BuckLing Loap FOrR A PLATE WITH Two STIFFENERs AND Ny = Nx.
Varugs oF K To BE UseD IN EQUATION 16
El/bD 2.5 5.0 7.5 10.0
A e
= .01 05 1 .01 .05 1 .01 .03 1 .01 .05 1
bt
]C oo L) co so oo o0
=0 | 549 | 590 | 488 | 871 | 830 | 7.83 | 9.67 | 958 | 948 1000 | 9.84 | 9.87
bD . &
- o o -]
1 | 491 | 464 | 434 | 852 | 803 | 751 : . & ° ° °
2 482 | 455 | 4.26 851 | 8.01 | 748
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TaBrLE IV
- -0 STIFFENERS AND Nx = 0.
ckLING LOAD FOR A PLATE wiTH TwWO
Chrreh. Bo Cnl;fim?gs or K 1o BE USED IN EoquaTioN 16
_—_———-“H
B
EI/bD 5 2.5 L 25
——‘—_—_'—_'—_ _—'-—._‘_-'-
C e L2
]— =0 11.36 10.45 6.89 5.43 470
L 1 o . 6.51 5.05 4.31
9 . . - 6.31 4.82 4.07
2 : o
NOTATION
DiscussioN .
The effect of increasing the torsional rigidity of the A — ifeea of stflﬁ'ener )
plate stiffeners resulted in a decrease in the critical b - ngtho square plate
load for all loading combinations investigated in_this C — Torsion constant
study. The values of K in the Tables which have been D — See Ec’l (2)
marked with an asterisk (°) were not obtained. The E — Young's Modulus
matrix iteration technique did not converge in a reason- G = Shr_aar Moiiulus
able amount of time using an IBM 1710 computer h — Grid spacing
system. The quantities marked with a double asterisk H — EI/Dh o
(®*) correspond to a mode shape in which the stif- 1 — Moment of inertia
fener did not buckle. The plate deflected upward be- J — GC/Dh
tween the stiffeners and downward on the ouside of K — See Eq. (16)

the stiffeners. The mode shape for the K value marked
with a triple asterisk (°°®) indicated upward deflec-
tion for points 3 and 4 (See Fig. 3) and downward
deflection for all other grid points.

Numerous buckling problems were solved during
the investigation. In general, the accuracy of an eigen-
value solution was not as good as that of the deflection
solution for the same grid spacing.

The analog model has been used to study the effects
of stiffeners on the buckling of plates with cut-outs®.
The results of that study will be published as soon as
experimental verification can be obtained.

CONCLUSIONS

It has been shown that a physical model of a plate
structure can be used to advantage for deriving finite
difference equations when discontinuities or difficult
boundary conditions are encountered. The solution of
plate buckling problems using finite differences ap-
proximations has been illustrated. A matrix manipula-
tion technique for substituting the boundary condition
equations or fictitious point equations into the plate
equations has been presented.

It has been shown that the effect of the torsional
rigidity of the stiffener on the critical load is small.
However, increasing the torsional rigidity tends to
decrease the critical buckling load.
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Mx, My, Mxy — Bending and twisting moments
Nx, Ny, Nxy — In-plane edge loading
— In-plane force acting on a stiffened
grid
— Lateral load per unit area
— Total lateral load at an elastic hinge
— Plate thickness
— Shear
— Deflection
y — Coordinates
— Ratio of Ny to Nx
— Poisson’s ratio
[S], [A], [B], [C], [D] — Finite difference coefficient
matrices
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