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VECTOR NORMS

The norm of a vector X with elements (X1, X, ..., Xn)
from a space of dimension n will be denoted by [X||.
Three desirable properties of a useful vector norm are
as follows:

[IX]| >0 for X540,

IX||=0 for X =0. (1)

|kX|| = |k| [[X]|, where k is a compl

. plex constant. (2)
X+ Y < Xl + (Y]] (3)
Two other useful properties follow from the above three
properties.
IX— Y| > X — Y|

: 4

IX =Y = [[¥[] — [X]l. EB;
To derive (4), consider the relations,
IX]| = [X — Y 4+ ¥|| < [X — Y|| + [[¥]], and thus

X = 1Y)l < X — ¥]l.

In an analogous fashi :
g shion we may obtain (5) by consid-

Y]] = ||-Y]|| = - Y —

chulslgiv!Lg IX =Y —X[| < X — Y| + ||-X],
¥l — (I=X|| < X — Y],
¥l — X < X - Y.
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MATRIX NorMms
The norm of a matrix A with element;

Aun Ay

3,
an Az ah
20

@n1  ape B .B.

of dimension n® is denoted by ||A]|.
generally imposed on these are

Al >0 if As£0,|[|JAll =0 for A=y

n
Desirable Dropert;,
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KA = [k [JAll for k a com )
plex constant

IA+ B < |A]l + [[Bl|, wh mt (1)
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IAB| < |/All I[B]. gg

We now present three comm
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erties -(12) as may be sh i i :
S own in a straightforwarg

n
Alls = max 3 |ayl. {
3 i= (®)
|[All: = \/ti, where t: is the maximum eigenvalue of
AAT, (")

n
[[Allc = max = lauyl. @)
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SUBORDINATION AND COMPATIBILITY

e At matrix norm [|A]| is said to be subordinate fo 2
SEgE A0k [X]|| if and only if it satisfies the rela-
tionship

IAX] |
[1X]] where X ranges over all vectors 1o

the given domain for which X =< 0. (13)

We shall sub_sequently demonstrate that ||A[l
norm suborfilnate to ||X|s, ||Al]: is subordinate
and [|A[[eo is subordinate to ||X]|co.

By definition (18) it follows that for a matrix nor™t
which is subordinate to a given vector norm

|IAX

[|A]] = max

is a matrix
to [[Xlls

Al = ‘”T”u for any X £ 0, Thus
Al Xl > JAX]. b
A given matrix norm and a given vector norm which
tible morms:

;fat'_;ﬁy this property are often called compd
= 0 the case is trivial of course.
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An equivalent definition for (13) is to say that matrix
norm [|A|| is subordinate to vector norm |[X]|| if

||A]l = max [|AX]| for all X such that ||X|| = 1. (13")

To demonstrate subordination then we wish to choose a
vector X' such that ||[AX'|| = [|A]| and further that
|AX'|| = ||AX]|[ for any other choice of X, where
X = lIX]| = 1.

1. Subordination of ||A]..

Choose X’ such that x,’ = {g :gll f 57" where j, is the

subscript corresponding to

m§x flajr = 2‘ Iet:l |
=1 1=1 3
LI " .
llax+fl, = 1511351 ey %] =z [aido| = Il
For any other choice of X (||X||: = 1) we have
n n n
ety = = lz gEnl & 2 1) lagy 1]
n n n
< le (1% 151 lag;1) < 2 Ixgl 2 logy |
< Ixlly fally = fall, = faxe),.

Thus ||AX[ < [|AX|.

2. Subordination of ||A]].

Before proceeding to a selection of X’ for this case it
is expedient to recall some basic results from linear
algebra. For a given n xn matrix B and anx 1 vector Y,
the sealars t. that satisfy the equations BY = tY are
called the eigenvalues of B. The vectors Yx that satisfy
BY. — t.Yx are called eigenvectors. If B is a positive
definite or positive semi-definite symmetric matrix, the
eigenvalues are all real and non-negative; one may
choose a basis of eigenvectors for the space; and any
two eigenvectors corresponding to distinct eigenvalues
are orthogonal. The matrix BB, where B” denotes the
transpose of B, is positive semi-definite symmetric, and
the inner product (BY:BY) = (B"BY'Y).

For a matrix A let t. represent the maximum eigen-

value of ATA and let U, represent an eigenvector corre-
U

responding to t.. We choose X' = |1U:I| ; thus [|X]}. = 1.

It then follows that

lal2 = (axeeaxt) = @Taxext) = (g Xxt)

=t (x'xt) = ) ][xrlla2 by

"Axrl[e - 'J—tl - IIA"2~
Let us choose an orthonormal basis of eigenvectors

and let us designate these by V,, where V, corresponds
to the eigenvalue t;. Thus

IVills = 1.

Any vector X (|[X|l: = 1) may be written as a linear
combination of the V,’s since these form a basis for the

space. Thus X = 21 e; Vi with 5‘, ¢’ = 1. We may
i= i=1
now state the results,

Ixl,2 = (axeax) = (Tkex) = (% z eV, e v,
i=1 4=3 1 1

n
=(5.‘.ct - Zoe, V).
1=1 1V 4= 41

Using the orthogonality property of the eigenvectors
we obtain,

n
¢®) £t L e =t

=(z
1 i=1

i=1

Iaxl, < Vi, = WAl = laxl,

3. Subordination of ||A|c.

Select X' such that x,=| 0 if a;,; = 0, where i, is the
lifai,y >0
—lifai; <0
) n n
index corresponding to max 3 |ayf= 3 |ail-
i j=1 i=
n L
' =
Wl = el 2 aynt] < me 5 leagllxyele

Then since [x,| < 1 we have

3
< max I . W may 2l
S [a Jf = ﬂ-z'lﬂu W2 may also show

n n
I]m]L = z I.jfl oy x.’l[ > l;]fl 3103 xd'l
7 n
= flidl =[]l .We have tnen
Iall, < laxel, < [ll, which impltes [Jaxe I, = lall.. For any
X (I, = 1), etting |x, | = mmx [x,], ve nave
a

n n
] = n?* Idfl ai.‘] RJI < Ixiol n?.x .1::1 llul
< I Tal, = el = 'l

BOUNDS FOR VECTOR AND MATRIX NORMS

An interesting and useful set of properties for the
vector norms defined by (6), (7), and (8) is that bounds
for each may be established in terms of either of the
other two. The following chain of inequalities succinetly
expresses these relationships. The proofs of them pro-
vide a worthwhile set of exercises.

I, < Ixll, < ~nlxl, < Ik, < o lx,
< n|x|_.

(15)

Two useful results concerning matrix norms may be
easily established. First we consider the equation
AX = sX where s is an eigenvalue of A and X is a
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corresponding eigenve

matrix norms we have .
LAl X = IAX] = |IsX|| = Isl IX]|. We Ob:::)l
Al = sl

Statement (16) provides an upper boun

values of a matrix A.

ctor. For compatible vector and

d for the eigen-

Secondly, consider

I|A]l# = ta. From (16) above it follows that

1Al < [aTH lal,

tl <
n n |
b3 2
< m‘ix l,jfl aji] mt.;x I e B33
n n
< ma > a [|mx |Z &, | =IAl [lall_
- jx Ii=l 1jl i ,j=l ij 1

giving the result
A2 < Al [|Alleo-

' THE EUCLIDEAN NORM

Another matrix norm that is often encountered is the
so-called Euclidean norm denoted by ||A||= and defined by

NN
el = €2 T (18)

The norm so defined may be shown to be compatible
with ||X|l:; however, it may also be shown that ||All=
cannot be subordinate to any vector norm. As a conse-
quence this norm is of small value in purely mathe-
matical analyses but is often helpful in practical work

al of the Tennessee Acade

my of Science

and error analyses. For further elucidat;
on of th
iy

see Wilkinson (1963).

DOi]]tl
ExAMrLES
Let X be a vector with elementy x
Then one computes = (8,.215 i
"~ L2 ).
Ik = 180+ =21 + [15] + =8 = 7
[IX[l =((8)* +(—2)*+ 1.5)* 4+ (—.8)7)s_
X[ = 3. =Visgy
-~ .99
Ia:;]
Let A be the matrix A = i
10 0
b
3 8 ¢ g i
4 -6 8 0 I
0 0 0 13
3, L
“lay) =17 14 19 4

The resulting norms are
[|A]l: = max (1714,197) = 19
[JA]]: = V225 = 15. The eigenvalues of A™A g, %, 49

/A[Joo = max (15,17,18,7) = 18 100, 225,
[|Alle = [(10)% + (B)* 4+ (3)* + (8)* + (6)* + (4)* +
(—6)* + (8)* + (7)*1"* = /399 = 19.99

An unpopular feature of [|Al]: is illustrated in work.
ing an example of the type above. Computing [|A|}; is a
considerably more complicated numerical task than com.
puting any of the other three.
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