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I THE Seconp Law oF THERMODYNAMICS

In many discussions on the second law of thermo-
dynamics whose purpose it is to acquaint the student
with its physical content, the student is presented with
two statements identified as the physical expression of
the second law. One is termed Kelvin's principle and
the other, Clausius’ postulate. .

Kelvin's principle states: In a cycle of processes it is
impossible to transfer heat from a heat reservoir and
convert it all into work without at the same time trans-
ferring a certain amount of heat from a hotter to 2
colder body.

Clausius’ postulate states: It is impossible that, at
the end of a cycle of changes, heat has been transferred
from a colder to a hotter body without at the same time
converting a certain amount of work into heat.

Any system or device which can be imagined that
violates these two principles is termed a perpetual
motion machine of the second kind, and the second
law is thus a statement of the incapability of con-
structing such devices.

Along with the above, one often reads that if viola-
tions of the Kelvin principle are allowed, there could
be constructed, for example, a ship capable of utilizing
the energy stored in the oceans as the sole source of
power for running the ship.

The purpose of this article is to point out that the
Kelvin principle (and also the Clausius postulate) may
be made to appear easily violable to the student and
thus its force mitigated.

We begin by first considering the following set-up of
two engines, E-1 and E-2, operating between two reser-
voirs, one a hot reservoir at temperature T, and the
other a cold reservoir at temperature T, E-1 operates
cyclically to remove heat (q.;) from the cold reservoir
by utilizing an amount of work (W), while rejecting
heat (qy,) into the hot reservoir. Simultaneously E-2
abstracts heat (q,,) from the hot reservoir and converts
some of it into work (W,), while rejecting heat (q,.,)
into the cold reservoir, all done reversibly and in ac-
cordance with the first law of thermodynamics (see
Fig. 1-a).

Assume now that E-2 has a higher thermal cfficiency
than E-1, ie., W,/q,, > W,/q,,. Further specify that
the situation is so adjusted that q,,, — q;,; = q. Thus
\}’, > W, (and from the first law, q.; > q.4). Also
since q,,; = 4y, the situation is one which is entirely
equivalent to the absence of the hot reservoir altogether,
as E-2 abstracts precisely the amount of heat E-1 rejects.
This equivalent representation is shown in Fig. 1-b,

Finally since W, > W,, E-2 can be used to run E-1
with the production of an amount of useful work
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Fig. 1. A Device for Violating Kelvin's Principle,

W =W, — W,, per cycle with no effect other than
the cooling of the cold reservoir, i.e., the reservoir in
effect loses heat q — o1 — Qe per cycle. This is
represented by the drawing of Fig. 1-c.

It is precisely this set-up which represents a ship (the
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_
E-l and E-2 system) operaljng by just nbstracting heat
the ocean (the reservoir at T.), to run itself,

s obvious certainly to the teacher that the fallacy
Jies in assuming that one reversible QMnot engine with

- working sl'xbstancg is more eﬂ:icxent than another
such engine with a different working substance, both
operating between the same two temperatures. But this
is not necessarily so with the student. The assumption
at first glance appears (o be rather plausible. It is

recisely on this point that the author feels the inade-
zuacy of the Kelvin (and also the Clausius statement)
as far as the student is concerned.
In point of fact the statement of the second law in
terms of entropy production seems the more incisive
here, i.€., in an isolated system the total entropy change
is AS=0. As a corollary to the above statement, we
may 2 that any device which operates cyclically to
convert heat into work must do so under the restriction
that the entropy of the universe must not be made to
decrease. The device described above is easily and
decisively shown to violate this statement of the second
law.

The analysis is as follows: Since the operation is a
cyclic one, no effect will be found in the engines them-
selves. Any effects must be found in the surroundings
(.., the reservoir at T,). We have seen that the only
effect of this device has been the loss of an amount of
heat @' = de1 = Ge2 by the reservoir (i.e., surround-
ings). Since this is a loss of heat, the only effect of this
device is to produce a decrease in the entropy of the
universe. Such a device must, by virtue of the second
Jaw, be incapable of existence.

A similar argument can be applied to the Clausius
postulate.

Here we merely adjust our device such that the work
(W,) utilized by E-1 is precisely that amount of work
(W,) produced by E-2. Since E-2 is the more efficient
apparatus que < qu1. This situation is represented by
Fig. 2-a. However, since Wy = Wi, the net effect is
precisely that which would have occurred in the absence
of the engines themselves (recall that the engines are
still operating in a cycle). This situation is depicted by
Fig. 2-b. Thus since q,; > qu. and by the first law
Qu1 — Ger = Qua — Yeo» We obtain the result that a
net amount of heat ¢ = qo1 — ez = Gp1 —dnz IS
rejected by the cold reservoir and is just equal to the
net amount of heat (non-zero) taken up by the hot
reservoir. Thus the total net effect is that an amount of
heat q”, has been transferred from a cold to a hot
reservoir without the expenditure of work, as is repre-
sented by Fig. 2-c. It is obvious that we again have a
decrease in the entropy of the universe contrary {0 the
second law.

1. THE THIRD LawW OF THERMODYNAMICS

The statement of the third law is often presented in
the following form: The absolute zero of temperature is
unattainable by a finite number of operations no matter
how idealized.  The erroneous conclusion, sometimes in-
ferred by the student, from the above statement is that
it also implies the performance of an infinite amount of

(e)

Fig. 2. A Device for Viotating Clausius’ Paostulate.

work as necessary to the attainment of absolute zero
and thus is responsible for its unattainability.

The following example demonstrates both the er-
roneous conclusion and its subsequent correction. Con-
sider first an object of constant heat capacity C, to be
cooled by the operation of a refrigerator whose expan-
sion coils are kept exactly at the temperature of the ob-
ject and whose compressor is kept uniformly at a
temperature To[1]. We calculate the_ gmoum of work
necessaty to cool the object from an initial temperature
T, to a final temperature by o

Let the temperature of the object and coils be initially
T, thus for the extraction of an infinitesimal amount q!
heat 8q, the minimum amount of work required is

given by
(49}

T - To
cru'é'ﬁ( T )
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Further this amount of heat is given by (2)
J‘ q = CV dT

Thus we obtain 3)

Jw = _,gV_(T-TO)dT

Whence the amount of work required to cool the object
from T, to T, is given by )

*
Te T - To
Cy (—5

Te

W =

Upon integration (assuming C; constant) we thus obtain

(5)
T
W=CVT°1n—T:—'-Cv(Tc—Tc')

Hence the work required to cool the object to T, —
' K is seen to be infinite.

n the above example, we have neglec.ed the result
tnat the heat capacity, C,, is a function of temperature
and in fact approaches zero as the temperature ap-
proaches zero. In point of fact we have con.radicted
the third law by assuming constant heat capacity. This
can be seen as follows:

(6)
=T (25
Cy =T( 57T )V
«nd by integration
(7)

—

75
S (T,v) - 8 (0,v) = f _TC:"_ 4t
0

Lhe constant of integration, however, would be a func-
uon of v only bu: the third law stipulates that the
limiting value S, of the entropy be independent of v,
thus the existence of such an integration constant is
ruled out, and we write

(8)

S(T,v) = S_=
)
(0]

Now the third law clearly implies that the entropy in-
creases from O°K to any temperature T must be finite,
ie.,

%)
T

S

Thus C, must approach zero with decreasing tempera-
ture; if this were not so the integral above would be-

c
V() 4T = Pinite
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te. This can easily be seen as follows: ¢

infini . . v
come in n a power series in the temperature,

may be expanded i

e =£ATn
v n n
(10)
T K X B
G L5
v dr=£f AT dEERE 0
g & 2 0 mn g

n

It is obvious that for this integral to be finite that .
must be greater than zero, and hence that A, — Q i,

A T". Thus C, approaches zero as T approaches
n

z:ro. Note that the ratio C./T does not necessarily
remain finite, for example, the case .C' = Constant
x T* yields a finite entropy but an infinite value of
C/T at T = O. However, al} k"f’wn crystalline
substances have heat capacities which yield finite limits
of C./T. Hence the correct expression for the work
required in our example is

(11)
Tc* Tc*
W=-T ‘v (m_ ar + c, (T dr
° B A -7 S
Tc T Tc
or the equivalent expression
(12)
Tc*® Tc*
W=-=T 23S dt +( OE aT
o { )] (T-)
Te ¢T v JTa T v

Upon integration between the limits T, and T,/ = O
we obtain

(13)
W= To [S(Tc,v) = 1im, S(T,v)]
-0
+ E(0,v) - KT ,V)

Also, since by the third law the limiting value of
S(T,v) is a constant independent of both T and v, wWe
may assume it to be zero, Hence we have

(14)

W =T, S(T..v) + E(O,v) - E(T..v)
V\;hich is seen to be finite. Thus we are forced to com-
chude that the unattainability of absolute zero is not
the result of 3 Trequirement of an infinite amount of

»bvork. In fact, if this were the case then the third law
ecomes merely a corollary of the second law.
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