JOURNAL OF THE TENNESSEE ACADEMY OF SCIENCE
Volume 39, Number 4, October, 1964

A RECOGNITION TECHNIQUE FOR THE TRANSLATION OF ALGOL 60%*
MaARrJORIE P. LIETZKE

Union Carbide Corporation
Oak Ridge, Tennessee

ABSTRACT

This paper describes a _re.cognit.ion technique based on a tree
structure which was originally developed to facilitate imple-
mentation of a syntax checking program for ALGOL 60. The
same technique may be applied to the design of a complete
translator for ALGOL or other languages.

A syntax checking program for ALGOL 60 [1, 4] was
developed as a part of the SHARE ALGOL project.
In designing and implementing this program, several
criteria were kept in mind: the recursive definitions of
the ALGOL language must be properly handled; a
method of error recovery must be devised which would
permit, in so far as possible, complete checking of a
source program in one machine run; all declarations
must be processed in order to check for correct variable
types in expressions; and finally, the processor must be
as fast as possible so that syntactically correct programs
may be passed without using an undue amount of time
in the syntax checking phase. All of these objectives
were achieved.

The syntax checker is based on a tree structure which
may be considered as being derived from the translation
matrix described by Bauer and Samelson [2]. A state-
symbol pair controls the action and the next state, as
in their method. However, the tree structure permits
economy in storage as well as flexibility. The tree
structure may conveniently be expressed as a series of
tables where each state or node of the tree is represented
by a table containing the expected or permissible sym-
bols for that state; these represent the non-null elements
of a particular row of a translation matrix. All of the
null elements may be lumped together under the single
entry “other”. Thus, by this method, an entire transla-
tion matrix may be reduced to a series of variable
length vectors, with no wasted storage space. Now,
using a two dimensional translation matrix, it is possible
to check only two items directly, i.e., the current state
and the current symbol. If additional information con-
cerning what has preceded this pair is necessary for a
decision, it must be obtained by contextual examination
f)f the preceding symbols. An alternative would be to
Increase the number of dimensions of the matrix; an
N-dimensional matrix would permit a decision to be
made on the basis of N items. However, there would
be an extremely large number of null elements in such
a matrix, resulting in wasted storage space. Also, the
computation involved in selecting the desired matrix
element would become longer and more complex with
each additional dimension.

It was decided that it was possible to simulate an
N-dimensional translation matrix by breaking the tree
e —

o * This paper is based on work done at Central Data Processing Facility
Perated by Union Carbide Corporation for the U. S. Atomic Energy
on.

127

structure down into syntactic units and using these units
on different levels. Each new level would, in effect,
add another dimension to the matrix. A block, for
example, has basically four states; the begin, declara-
tions, statements, and the end. Within the declarations
there may be blocks in procedure declarations, and a
statement may itself be a block. The ALGOL language
places no restrictions on how far this recursiveness may
be carried, thus it is impossible to define a finite tree
structure capable of handling all possible cases. The
direct result of this is a set of mutually recursive proces-
sing subroutines, one for each syntactic unit of the
ALGOL language. Each processor is capable of calling
itself or other processors as necessary. This makes it
possible to append all or any desired portion of the
ALGOL tree structure dynamically, where ever it is
required, and still have a relatively short program con-
sisting of a single definition for each element of the
language.

The processors are sets of tables which list the pos-
sible or expected symbols for each state in a syntactic
unit. Each symbol has associated with it an action and
a next state. The action depends on the symbol and
the state of the syntactic unit being checked and may
range from no operation to a fairly complex sequence
of operations, including the recursive call of other
processors. The next state also depends on the current
symbol and state and may depend on whether a proces-
sor invoked in the action part has given a normal
return or an error return. The next state is always
another state in the same processor, a return, or an
error eturn.

In designing the processors the official ALGOL Re-
port [3] was followed exactly. In general, each processor
can call directly only the processors for the syntactic
units which may properly be used within the unit being
checked. The block processor, for example, may call
the general declaration processor or the general state-
ment processor. It may not call directly an expression
processor or a processor for a particular type of state-
ment or declaration. A list of the syntactic units for
which processors were designed is given in Table 1,
together with the other processors which may properly
be called by each processor.

The arithmetic expression processor shown in Table
2 is an example of a typical processor. When this pro-
cessor is called, the assumption is that the first symbol
of an arithmetic expression is under scan and checking
begins at state AREX1. The symbol under scan is
compared with each symbol in the table until a match
is found or until the entry “other”, meaning any .other
symbol, is encountered. At this point, the indicated
action is taken and control passes to the next state where

comparison is resumed.

Special consideration had to be given to the lf;g:;:g
of finding a new starting point to continue ¢ < ible
after an error has been detected. It would bfi Egtemp :
to skip to the next semicolon, end, or else an i of
to go on from there, but this could Jeave sec lber of
the program unchecked. To minimize the numct o-
runs necessary to obtain a syntactically corre Ei o
gram, a Resume processor was designed to recog e
and check any syntactic unit and then return co;l i
to the processor which called it. If on a return '“l’.le
Resume the calling processor is unable to c_0n§lfﬂthv
it may call Resume again to check the next unit; 1 'Ii
calling processor finds a legal symbol on return it Wi
continue checking in the normal mode. If the Resume
processor recognizes the beginning of a sgatement it
gives an error return, indica‘ing to the calling proces-
sor that it also should give an error return; normally
the beginning of a new statement indicates that the
end of the incorrect sructure has been reached and
processing may continue in the normal mode. In any
case, the entire program is checked and most errors
detected in one machine run.

In using these processors, it is necessary to keep
track of each call of a processor in order to make a
proper return when processing has been completed. It
is also necessary to save the current values of certain
quantities on entering a processor and to retrieve these
values on leaving the processor in order to follow the
block structure and flow of an algorithm. To do this,
a number of pushdown lists are set up for declared vari-
ables, labels, formal parameters of procedures, tempor-
ary storage of pointers and indicators, and the locations
of calls of processors. These lists are manipulated by a

my of Science

e —
e Journal of the Tennessee Acad o
— hich perform the actions re

tines W
;e}’t :)hfe s;rbor:el;sors and do all the necessary book!
on the pushdown lists.) .

It was recognized that this syntax checking Program

erforming mOost of the functions of a translatoy
?”8913 ging even rudimentary storage allocation for ¢ ¢
= ;:;,-ed variables. However, certain short-cut
dzimissible here which could not be allowed in 5 com.
glete translator. For example, Tgble 3 shows the arith.
metic expression Pprocessor as it must appear for 5
complete trans]a}tor. Note that the.re are six additiong)
states or nodes In the tree to permit the proper geners.
tion of object code. It w_ould, of course, be possible 1
add more states to permit th; tree structure to handle
the precedence rules for the bma}ry operators, but jt Wa
felt that the forcing valu_e tecghmq_ue used by Bauer i
Samelson was more efficient in this case. 1t is necessary
only to compare the current operator with the precedip
operator to determine whether code may be generateq
at a givn point.

Preliminary work on the im;_:lementation of thi
technique indicates that it is possible to set an error
flag and design the action subroutines so that no more
code will be generated after a source program error
has occurred. This permits the processor to continue
scanning as a syntax checker only, so that the first at-
tempt at translation will give the programmer a relative-
1y complete list of his errors.

This paper has described a recognition technique gs jt
may be used in a translator for ALGOL 60. It should
be noted, however, that this technique is applicable to
any situation where it is necessary to make a decision
on N successive items.

questeq
keeping

S Were

Table 1

List of Syntactic Units and Processors

Syntactic Unit Processors Called

Syntactic Unit Processors Called

Block Declaration, Statement,
Comment, Label, Resume
Declaration Type declaration, Array
declaration, Procedure
declaration, Type Procedure
declaration, Switch declaration,
Resume, Comment
Statement Assignment statement,
Conditional statement, Go To
statement, For statement,
Compound statement, Block
Label, Procedure statement

Assignment
Statement

Arithmetic Expression,
Subscript Expression,
Boolean Expression

Conditional
Statement

Statement, Unconditional
Statement, Resume

Go To Statement Designational Expression

For Statement Arithmetic Variable, Arithmetic

Expression, Boolean Expression,

Statement
Compound Statement, Resume
Statement
Label
Comment

Type Declaration

Array

Arithmetic Expression
Declaration

A Recognition Technique for the ‘Translation_of Algol 60

Syntactic Unit

Processors Called || - Syntactic Unit

Processors Called

Procedure
Declaration

Type Procedure
Declaration

Switch Declaration

Arithmetic
Expression

Subscript
Expression
Boolean Expression

General Expression

Specifier, Statement, Resume Procedure

Statement

Procedure Declaration, Resume Parameter List

Designational Expression

. . Parameter Type
Arithmetic Expression, Boolean >

Expression, Function call,

; ! Parameter Delimit
Subscript Expression, Resume et

Arithmetic Expression Specifier
Comparison
General Expression Expression
Boolean Expression, Arithmetic [T———
Expression, General Expression esngna‘tlona
Subscript Expression, Function Expression

Call, Comparison Expression,

Parameter List,
General Expression

Parameter type,
Parameter Delimiter

General Expression

Arithmetic Expression

Designational Expression,
Boolean Expression, Simple
Designational Expression,

e LRimih &

Resume Resume
Unconditional Statement Simple Designational Designational Expression,
Statement Expression Arithmetic Expression
Arithmetic Variable Subscript Expression A Truth Value
Function Call Parameter List,
General Expression Resume Any of the above processors
Table 2

Arithmetic Expression Processor

State Symbol

Action

Next State
No Error Error

AREX 1 4
if
AREX 2 ID
(
other
AREX 3)
other
AREX 4 |

skip (pass on this symbol, get next symbol)
skip

skip, Boolean Expression Processor

get type of identifier

skip, Arithmetic Expression Processor

skip
Error message
skip

skip

AREX 2
AREX 2
AREX 5 AREX 9
AREX 8
AREX 3 AREX 10

error return
AREX 4
AREX 10
AREX 2
AREX 2

130
State Symbol Action
X skip
7 Real Exp: = true, skip
= skip
) skip
other
AREX 5 then skip
other
AREX 6 i Error message, lnsert‘ (i,n :;it;lmeﬁc
other Arithmetic Expression Processor
AREX 7 else skip, Arithmetic Expression Processor
other Error message
AREX 8 real variable Real exp: = true, skip
real procedure skip, function processor
integer variable skip
integer procedure skip, function processor
array Real exp: — true, skip, subscript
processor
real array Real exp: = true, skip, subscript
processor
integer array skip, subscript processor
Boolean variable Error message, skip
Boolean array Error message, skip, subscript
Boolean procedure Error message, skip, function state-
ment processor
other Error message
AREX 9 then
else
other Resume processor
AREX 10)
other

Resume processor

Tournal of the Tennessee AN T T dealenp ol

Next State
No Error Error

AREX 2

AREX 2

AREX 2

AREX 2

return

AREX 6

AREX 9

AREX 7 AREX 9

AREX 7 AREX 9
return error return
AREX 9

AREX 4

AREX 4 error return
AREX 4

AREX 4 error return

AREX 4 error return

AREX 4 error return

AREX 4 error return
AREX 4

AREX 4 error return

AREX 4 error return

error return

AREX 5

AREX 7

AREX 9 error return

AREX 3

AREX 10 error return

Table 3

Action

State Smybol
AREX 1 if
+
* other
AREX 2A ID
(
other
AREX 2 ID
(
other
AREX 3A)
other
AREX 3)
other
AREX 4A]
)
other
AREX 4B)
]
other
AREX 4
X
/
)
other
AREX 5 then
other
AREX 6 if
other

if code, Advance, Boolean Expression
Advance

Push

Qualify, Unary Code
Push, Arithmetic Expression

Qualify

Push, Arithmetic Expression

) code
error message
) code
€rror message

Array code, Advance

error, Symbol : —], Array Code, Advance

€rror message

function code, advance

error, symbol

binary op code, push
binary op code, push
binary op code, push
binary op code, push
binary op code, push
binary op code, push
binary op code

then code, advance

error, arithmetic expression

Arithmetic expression

A Recognition Technique for the Translation or Algol 60

131

Arithmetic Expression Processor for Translation

=), function code, advance

Next S.ate
No Error Error

AREX 5 AREX 9
AREX 2

AREX 2A

AREX 2

AREX 2

AREX 3A AREX 10A
error return

AREX 8

AREX 3 AREX 10
error return

AREX 2A

AREX 10A

AREX 2

AREX 10

AREX 4

AREX 4

error return

AREX 4

AREX 4

error return

AREX 2

AREX 2

AREX 2

AREX 2

AREX 2

AREX 2

return

AREX 6

AREX 9

AREX 7 AREX 9
AREX 7 AREX 9

R+

State

AREX 7A

AREX 7

AREX 8

AREX 9

Symbol
other

else
other

real variable
integer variable
Boolean variable
array

real array
integer array
Boolean array
real procedure
integer procedure
Boolean procedure
other

then

else

other

AREX 10A)

other

AREX 10)

other

of Science
Journal of the Tcnmyfff. Amdcmy~ {M ¢

Next State
No Error Erro
Acﬁon L S e o e
o - R return
sl ode AREX 7A AREX 9
. arithmetic expression
else code, a RER D
error message
AREX 4
Push
AREX 4
Push
AREX 4
error, push .
push, subscript expression AREX 4A error return
push, subscript expression AREX 4A error return
push, subscript expression AREX 4A error return
error, push, subscript AREX 4A error return
push, parameter list AREX 4B error return
push, parameter list AREX 4B error return
error, push, parameter list AREX 4B error return

error error return
AREX 5
AREX 7

Resume AREX 9 error return
AREX 3A

Resume AREX 10A error return
AREX 3

Resume AREX 10 error return

The University of Tennessee Department of Psy-
$8,989 grant from the U.S.
ucation, and Welfare to help
finance research in cognitive structure and verbal be.
havior. The program will be directed by Dr. Howard
R. Pallio, Assistant Professor of Psychology. Accord.
“The human mind is like a filing
way the meaning of words, It Te-
eanings for talking and thinking. The

chology has received an
Depa;tment of Health, Ed

ing to Dr. Pollio,
cabinet—it stores a
trieves the filed m

e —— 0t .

LITERATURE CITED

1) Lietzke, M. P. 1963. An ALGOL 60 Syntax Checker for the
IBM 7090 Computer, ORNL 3399,
2) Samelson, K. and Bauer, F. L. 1960. Sequential Formula

) Translation, Communications of the ACM. Vol. 3, No. 2.
3) Naur, Peter, et al 1960, Report on the Algorithmic Language
Y LALGOL 60. Communications of the ACM. Vol. 3, No. 5.
&c)tzke. M. P. 1964. A Method of Syntax Checking ALGOL

- Communications of the ACM. Vol. 7, No. 8.

NEWS OF TENNESSEE SCIENCE
(Continued from Page 124)

purpose of thig research is to determine how the mind
performs thig function.”

———— e o

Dr. Louis A. Ra ics at the
P - Rayburn, Professor of Physics a
Roiversity of Georgia, has joined the staff of the Ok
he'.geofl':;m“l}e of Nuclear Studies for 15 monlh‘SJ n‘is

" e University Participati ion in the Unr
versity Relations Div)i,sio;, cipation Section

(Continued on Page 136)

	JTAS39-4-127

