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Since its discovery in 1932, the neutron has served as a
powerful probe of the structure of nuclei. Its lack of charge
allows even a very low energy neutron to approach the nucleus
without suffering the intense Coulomb repulsion which is experi-
enced by other nuclear particles such as a proton or an alpha
particle. This lack of Coulomb repulsion greatly simplifies the
analysis of neutron data. An approximate analysis is simplified
even further in the case of neutrons of relatively high energy
(>10 Mev); at relatively low energy ("1 Mev) a more exact analysis
is feasible.

At high energy the De Broglie wavelength of the neutron, A,
divided by 27, X, is somewhat smaller than the radius of heavy
nuclei (~10~12 cm). For 14-Mev neutrons

A =b/(2n2mE) = 1.23 x 10~13

where b is Planck’s constant, m is the mass in grams of a
neutron, and E is its energy in ergs. Under these conditions the
scattering and absorption of neutrons by nuclei appear somewhat
similar to the scattering and absorption of light in simple problems
of optics. The ease of an approximate interpretation resulting
from the use of optical analogy enabled physicists relatively
early in the history of nuclear science to arrive at an estimate of
the size and density of nuclei from neutron total cross section
measurements (Sherr, 1945),

In general, a neutron cross section is defined as the probability
of a neutron producing an effect of a given type as follows:

number of events per unit time per nucleus (n
o= .

number of neutrons per unit area per unit time
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If the event is the deflection or removal of a neutron from a
beam, then the cross section is called the total cross section,
o One can also think of the total cross section of a nucleus
for a neutron as the effective projected area of the nucleus, O
such that if the neutron hits within this area it will be removed
from the beam. Total neutron cross sections are found experi-
mentally by a simple measurement of the attenuation of a neutron
beam by the samples being investigated (Marion and Fowler,

1960-61).

Since 14-Mev neutrons are readily available from the T(a’,n)He4
reaction (Marion and Fowler, 1960-61), accurate total cross
sections have been measured for a number of nuclei at this energy
(Hughes and Schwartz, 1958). By use of high-energy cyclotrons,
neutrons of relatively high energy (~100 Mev) can be produced for
total cross section measurements. Results of such measurements
are collected in a set of curves in the publication ‘‘Neutron Cross
Sections” (Hughes and Schwartz, 1958). Historically, the high-
energy cross section measurements have been interpreted in
terms of an optical model. Although .a very simple analysis
based on this model gives only a qualitative fit to the data, a
more sophisticated handling of the model permits a rather good
fit to the experimental information. The following qualitative
arguments lead to the expression (Blatt and Weisskopf, 1952,
p. 324)

o = 2n(R?) 2)

which was used in the early interpretation of the data on total
cross sections for neutrons of energy ~25 Mev (Sherr, 1945).
The projected area of the nucleus of radius 7, as seen by the
neutron moving toward it, is given by

a(r + X)2 = aR? . (3)

X shows up as the effective radius of the neutron. As an approxi-
mation, suppose the nucleus is black to neutrons; that is, suppose
that every neutron which strikes the nucleus is absorbed out of
the beam. In Fig. 1 (upper left-hand corner) the wave front
associated with the incident neutron is represented by the series
of vertical lines. mR? of this wave is removed by absorption of
the nucleus. Because of diffraction effects, the nucleus does
not cast a sharp shadow; but in a distance the order of R?/x,
the wave will have been diffracted in such a way that behind the
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nucleus the situation will be as shown in Fig. 1. One can esti-
mate the probability of the neutron being scattered out of the
beam by this diffraction phenomenon by means of the following
qualitative considerations.  Suppose at the position of the
nucleus one considers neutrons emitted as if they came from the
back of the disk of radius R with the same wavelength of the
initial neutrons but 180° out of phase. Then immediately behind
the nucleus the waves will cancel and one will find a region in
space in which there is small probability of finding the neutron
as indicated in Fig. 1. These out-of-phase neutrons will diverge
from the initial direction in a distance R?/X, so that one will
have a diffraction effect. The number of neutrons introduced
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Fig. 1. Nuclear radii from fast neutron total cross sections.
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with this shift in phase will be the same as the number removed
from the beam by the black nucleus. This number is equal to
7R? per nucleus. Therefore, in addition to the probability per
nucleus of the neutrons being absorbed out of the beam 7R?,
there is an equal probability 7R? of the neutrons being diffracted
out of the beam. The total cross section then, either for absorp-
tion or scattering, is given by Eq. (2). Thus if one divides the
measured total cross section, oy, by 27 and takes the square
root of the result, according to Eq. (2) one obtains the quantity
o
r+&k = S : (4)
2

In Fig. 1, O'T/Zn is plotted as the ordinate against the
atomic weight of the sample to the 1/3 power. The straight line
through the solid circles representing the 14-Mev data has the

equation
Zr
- =(1.4AY3 + 1.2) x 1073 cm . (5)
7

While there is a systematic variation of the points about this
line for the isotopes above aluminum (4173 = 3), Eq. (5) gives
the cross section to within about 10%. The intercept at Al/3 = 0,
1.2 x 10™13 cm, which is interpreted as the effective radius of
14-Mev neutrons, is approximately %, the neutron wavelength
divided by 27. If one assumes a spherical nucleus, the volume
should be proportional to the cross sectional area to the 3/2
power, »0'.131/2, which from Eq. (5) is proportional to A, the number
of nucleons in the nucleus. Thus, since the volume of the
nucleus is proportional to the number of nucleons, the number of
nucleons per unit volume is constant; that is, the density of
nuclear matter is a constant. The straight line in Fig. 1 then
indicates that the radius of a nucleus of atomic weight A is

r=14x10"13413 cq | (6)

Radii of nuclei have been determined in a number of ways,
such as scattering of high-energy electrons, Coulomb energy
differences of nuclei of the same A but different Z, and from the
lifetime of heavy nuclei for alpha emission. All of these methods
and many others (Revs. Modern Phys., 1958) give approximately
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the same results as those indicated by the neutron total cross
section measurements as described above.

According to the simple analysis, the cross section at 45 and
95 Mev neutron energy should be given by the parallel lines
shifted down by the differences in X for neutrons of 45 and
95 Mev from X for 14-Mev neutrons. As indicated by the data
points, this is approximately true for the 45-Mev data, but for
the 95-Mev data there is considerable deviation from the simple
theory. While the elementary analysis is not really valid even
for the 14- and the 45-Mev neutrons, at 95 Mev the model upon
which the analysis is based breaks down even for medium-weight
nuclei. At this energy the nucleus (particularly in the light-
and medium-weight regions) becomes transparent to the neutrons.

In Fig. 1 the fit to the data is much worse for low-mass
nuclei than it is for heavy nuclei. In this region X is not much
smaller than the radius of the nuclei, so the qualitative arguments
used to derive Eq. (2) do not apply. One has to carry out the
analysis in more detail. This analysis need not be limited to
cases in which the neutron wavelength is short, that is, to cases
in which the neutron energy is high. As a matter of fact, the
experimental data is susceptible to interpretation if the energy
is low, even negative. Information on the bound states of
neutrons in nuclei (the negative energy states) is extremely
important for the study of nuclear structure. Experiments on the
scattering and binding of neutrons by 06 are particularly re-
vealing. 016 is to nuclear spectroscopy as a noble gas is to
atomic spectroscopy. The eight protons and eight neutrons in
0!6 form tightly bound closed shells, so that the 0'% nucleus
behaves toward a neutron much as if it were an average potential
of interaction somewhat similar to the situation in atomic spec-
troscopy for an atom just above the closed atomic shells.

There are, however, significant differences between the
details of nuclear and atomic spectroscopy. In the case of atoms
the Coulomb forces between particles are well known, whereas
in the case of nuclei, the internucleon forces are more compli-
cated and less completely understood. In the case of nuclei,
the magnitude of the coupling between the spin of the nucleon
and its orbital motion in the field of the nucleus is very much
larger than is the case for the electrons in atoms, and this
coupling is of opposite sign in the two cases. This spin-orbit
coupling, which in the case of atoms results in a small splitting
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of the energy levels, leads in nuclei to a different ordering in
the filling of nuclear shells (Eisenbud and Wigner, 1958). In
nuclear spectroscopy the system of labeling energy levels is
slightly different from that customary in atomic spectroscopy.
As an example, consider the ground state of a neutron bound to
016, that is, the ground state of 0!7, This state is designated
as a 1dg ,, level. The number *‘1’’ signifies the number of zeros
in the radial wave function of the neutron. This is different from
the principal quantum number designation of atomic spectroscopy.
The letter *‘d”’ gives the orbital angular momentum quantum
number of this neutron; in the example [ = 2. (s, p, 4, [, g, etc.,
as in the case of atomic spectroscopy mean [ = 0, 1, 2, 3, 4,
etc.) The subscript 5/2 gives the total angular momentum quantum
number of the state; in the example [ + 1/2=5/2.

The observed energy-level diagram (Ajzenberg-Selove and
Lauritsen, 1959) for states in 017 with even values of orbital
angular momentum quantum numbers (/ = even), that is, for states
with even parity, is given in the upper left-hand corner of Fig. 3.
The ground state as mentioned above is a 1d5/2 state; the first

excited state at —3.27 Mev is a 251/2 state. Both of the 151/2

states are already filled in the 016 core. The six 1p states
2(2] + 1) are also occupied in 016, so that the next available
single-particle states for a neutron bound to an 016 core are the
2s states or the 1d states. The ld, ,, state at +0.94 Mev is a
virtual state, and shows up in neutron total cross section and
scattering measurements.

One of the problems arising in nuclear spectroscopy is that
of finding the average potential which will give the observed
energy levels. As a first approximation, consider this potential
for a neutron due to the 01 core as being a square well:

V(r)=—V0, r<a ,
V() =0 , r>ig

(7

Here 7 is the radial distance of the neutron from the center of
the OA16 core.  As will be seen, the requirement that 251/2 states
be bound by —3.27 Mev limits the values of V and a which need
to be considered. For an s state, / = 0 and the Schrédinger wave
equation
vy +2—m(E -V =0 (8)
,}52
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reduces to

dzu(r) 2m
+—(E ~V)u(r)=0 . 9)
dr? %2 '

m is the reduced mass of the neutron,

mass of neutron x mass of O1°
m =

mass of neutron + mass of 016

with the wave function iy = »/r depending only upon 7. Inside
the potential well the solution of Eq. (9) which is zero at the
origin is
V2m(=E, + V)
ub = A% sin e (10)

where A% is a constant.

For the bound 2s, ,, state, E, is 3.27 Mev. Outside of 7 = a,.
the solution of Eq. (9) which falls off with distance is

sy
€Xp = 7

« = b _
+

5 (1D

The solutions of Eq. (9) must join smoothly at 7 = @ as shown in
Fig. 2. For any a4, only one value of V, will lead to two zeros
in u (2s state) and allow the internal and external wave functions
to match smoothly at r = a. In order to single out the values of
a and V, which best describe the 2s state of 017, additional
experimental information is required. This can be supplied by
neutron scattering from 019,

For neutron scattering of s waves (I = 0), Eq. (9) holds also.
In the scattering case, E_ .., the energy of the neutron in the
center-of-mass system, is positive. It can be shown (Schiff,
1955) that the potential due to the nucleus has the effect on the
external wave function, which describes the neutron, of shifting
the phase by an angle 551/2 (see Fig. 2). It is also shown that

the total cross section for scattering s-wave neutrons is related
to this phase shift by the equation

o = 4mx? sin? 551/2 5 (12)

The total cross section and the differential cross section of
neutron scattering from O!® have been analyzed in terms of
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Fig. 2. Wave functions arising from a square well potential model for

017

the s-wave phase shifts & and the phase shifts of higher
1/2

2s states.

angular momentum waves (Fowler and Cohn, 1958). At low
enough energies the total cross section is entirely due to s waves,
so that §_ can be calculated from the total cross section data

*1/2
by use of Eq. (12). At 2.37 Mev in the laboratory system, there
is a dip in the total cross section which is caused by interference
between the continuous potential 35 phase shift and a com-
1/2

pound nucleus s, ,, resonance. At such a resonance the phase

shift goes through +90° at the resonance energy. The shape of

the dip means that the potential 5s . phase shift is =90° at
172

2.37 Mev in order to just cancel the +90° resonance phase shift
at this energy. The unraveling of the phase shifts between low
energies and 2.37 Mev is more complicated but is straightforward.
Not only is the total cross section necessary, but also knowledge
of the angular distribution of the scattered neutrons is needed.
The points shown plotted in Fig. 3 give the results of the phase
shift analysis based on this type of information (Fowler and

Cohn, 1958).
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Fig. 3. Phase shifts for scattering of neutrons from 016.

Since experimentally it is found that the potential s-wave
phase shift is —90° at a neutron laboratory energy of 2.37 Mev,
the phenomenological nuclear potential which gives the 2s, ,
bound state at —3.27 Mev must also give this phase shift. This
means that the potential well must alter the wavelength of a
neutron at 2.23 Mev in the center-of-mass system (see Fig. 2),
so that its phase relative to the wavelength of a free neutron is
—90°. Mathematically, this condition is satisfied by requiring
that the value of the wave function inside the nucleus, uf, and
its derivative, du;/dr, match the corresponding quantities for
the wave function ug outside of the nucleus. For the square

well,
vam(E_  + V)
s s _: S
uj = A® sin s 7%, (13)
where

mass of neutron x mass of olé
E = Epp » (14)

mass of neutron + mass of oL

V2mE . .,
r+0 (15)

s =
0 % S1/2
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Figure 2 shows how this matching of the wave functions at the

boundary of the well takes place. It also shows the resulting

phase shift, 0_ o which is induced by the presence of the
1/2

potential. As in the case of the bound state discussed earlier,
the requirement that the potential well produce a —90° phase
shift at 2.23 Mev does not uniquely fix Vo and a; there is a
curve of V, versus a which satisfies this condition. The potential
Vo = =35.1Mev, a = 4.21 x 1013 cm, however, gives both the
2s,,, bound state at —3.27 Mev and 551/2 = =90° at +2.23 Mev

neutron energy. These parameters also give the correct variation
of the s, , phase shifts with energy. These calculated phase
shifts are given by the dashed curve shown in Fig. 3. The
radius of this well, 4.21 x 10™13 cm, is in rough agreement with
the value which one calculates from Eq. (4), as dedulced from
14-Mev neutron scattering data. The potential described by
these parameters gives the best square well which describes the
single-particle properties of 07,

If one pushes the analysis further, the square well approxi-
mation proves to be inadequate. This is not surprising; intuitively
one suspects that there should be a diffuse boundary to the
potential. In the calculation of the 1d states split by spin orbit
coupling, the failure of the square well shows up. The well of
radius 4.21 x 10713 cm and of depth 35.1 Mev, which describes
the s states, predicts too narrow a level for the 1d3/2 virtual
state at 0.94 Mev and gives the binding of the 1c175/2 state much
too low in energy.

A diffuse boundary to the potential can be introduced in a
number of ways; a standard form, called the Woods-Saxon potential
(Woods and Saxon, 1954) is represented by

_.VO

(16)

V =
1+exp(r~ry)/8

V, is the well depth and 7, and 0 are parameters of the dimension
of length which can be adjusted to fit the data. The parameter &,
which defines the diffuseness of the boundary, can be selected
to give the observed width of the 1c173/2 state. Then by the
method illustrated in the discussion of the square well, V, and
7o, are determined by fitting the 2s,,, state and the s, , phase
shifts. The 1d states require a spin orbit term in the potential.
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This is usually taken in the Thomas form (Thomas, 1926; Inglis,

1936):
—yB2a1 v /1.
il e < S>. (17)

S.0.
om2e2 7 or %2

Here y is an adjustable constant, c is the velocity of light, and
1-s is the dot product of the orbital angular momentum. The
calculations, while straightforward, are sufficiently tedious to
require the use of a high-speed computer. All of the even parity
states from —4.14 Mev up to 2.0 Mev are well described by the
following set of parameters (Corman and Fowler, 1960):

for s states and s phase shifts,
V0 = =50.3 Mev ,
R =3.34x10"" cm ,
5=0.5%x10"13 cm ;
for d states,

V,=—47.0 ,

R=334x10"2cm ,
5=0.5x10"2cm ,
y=19.3 .

In Fig. 3 the insert shows a plot of the potential well calculated
from the set of parameters tabulated above. The dashed curves
are the s- and d-wave (even parity) phase shifts calculated with
the Woods-Saxon potential. There is good agreement with the
measured phase shifts (Fowler and Cohn, 1958), which are indi-
cated by the data points.

The phenomenological potential discussed above not only
describes the bound states and some of the virtual states arising
from the interaction of a neutron with 016, but it also forms the
starting point for a more detailed quantum mechanical analysis
of the nucleus O!7. For example, the wave functions given by
the potential can be used in calculating the y-ray emission
probability between the first excited state of 0'7 and the ground
state (Barton, Brink, and Delves, 1959). The wave functions
also can form the basis of a calculation of the energy levels of
nuclei above 017, such as 08 and F'8, These wave functions
correspond, in fact, to the hydrogen atom-like wave functions
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which are so important in atomic spectroscopy. Most energy
levels of nuclei, however, are not as simple as the single-
particle levels discussed here. Indeed, the odd-parity levels of
0!7 as well as the higher energy levels are not of the single-
particle character. As in the case of complicated atoms, nuclear
levels in general show a great deal of configuration mixing.
These nuclear levels have a considerably longer lifetime than
that expected from single-particle resonances. Such long-lived
nuclear states are called compound nucleus states.

The introduction of phenomenological potentials greatly
improves the fit to the total neutron cross sections at higher
energies, 14 < E < 100 Mev, discussed at the beginning of this
article (Fig. 1). The simple analysis described in connection
with these cross sections assumes that nuclei are totally ab-
sorbing for high-energy neutrons. This, in fact, is not the case;
there is an appreciable probability of the incident neutron passing
through the nuclear matter. At the surface of the nucleus the
neutron is refracted by the average potential arising from the
interaction with all of the other nucleons in the nucleus. The
effects of both this refraction and of the absorption of neutrons
can be represented by a potential of the Woods-Saxon form
described above, to which has been added a term to simulate
absorption. This latter is accomplished by the introduction of
an imaginary term to the potential. This imaginary part of the
potential is often chosen with the same radial dependence as the
real part of the potential. A better over-all fit to the experi-
mental data is obtained, however, if the imaginary part of the
potential is peaked at the surface of the nucleus, which corre-
sponds to absorption taking place mostly at the nuclear surface,
The parameters which describe this ‘‘optical’’ potential are
simple functions of neutron energy and atomic weight (Bjorklund
and Fernbach, 1958). The real part of this *‘optical’’ potential
is very similar to that shown in Fig. 3; the depth, which is a
function of neutron energy, is comparable in the two cases; the
surface thicknesses determined by & in Eq. (16) are similar; and
the effective radius of the *‘optical’® potential, the ro of Eq. (16),
increases with atomic weight A as follows:

7o = 1.25 x 107134173 ¢y
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With such simple phenomenological expressions, one is able to
correlate very many neutron measurements and even predict
neutron cross sections for the practical needs of reactor engi-
neering where measurements are difficult, or impossible.
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