THE QUADRIC OF WILCZYNSKI

M. L. MACQUEEN

Southwestern at Memphis, Tennessee

The purpose of this note is to state and prove a theorem concerning the quadric of Wilczynski. In the first place, let S be a non-ruled surface in ordinary projective space. If the asymptotic curves are chosen as parametric, then S is an integral surface of a pair of differential equations which can be written in the Fubini canonical form [1]

(1)
$$x_{uv} = px + \theta_{u}x_{u} + \beta x_{v}, \quad x_{vv} = qx + \gamma x_{u} + \theta_{v}x_{v} \qquad (\theta = \log \beta \gamma),$$

in which subscripts indicate partial differentiation, and the coefficients are functions of u,v. We select an ordinary point P_{x} of the surface S as one vertex of the usual local tetrahedron of reference whose vertices are the points x,x_{u},x_{v},x_{v}

Two lines $\overline{l}_1(a,b)$, $\overline{l}_2(a,b)$ are reciprocal lines at a point P_x of the surface if the line $\overline{l}_1(a,b)$ joins the point P_x and the point y defined by

(2)
$$y = -ax_1 - bx_2 + x_1y$$

and the line (a,b) joins the points ρ , σ defined by placing

(3)
$$\rho = x_u - bx, \quad \sigma = x_v - ax,$$

where a,b are functions of u,v. It follows from equations (3) that

(4)
$$\rho_{v} = -(b_{v} + ab)x - b\sigma + x_{uv},$$

$$\sigma_{u} = -(a_{u} + ab)x - a\rho + x_{uv}$$

The lines ρ_{v}^{ρ} and σ_{u}^{ρ} intersect the line $\zeta_{1}(a,b)$ in the respective points

(5)
$$(ab - b_y)x + y$$
. $(ab - a_y)x + y$.

The harmonic conjugate of the point P with respect to these two points is the point whose local coordinates are

(6)
$$x_{1} = ab - \frac{1}{2}(a_{u} + b_{v}),$$

$$x_{2} = -a,$$

$$x_{3} = -b,$$

$$x_{k} = 1.$$

¹Lane, E. P. 1942. A treatise on projective differential geometry. Chicago.

(6) become

We now propose to prove the following theorem: At a point P_X on a surface the locus of the point (6) for a line (1(a,b) which is the cusp-axis of a variable pencil of conjugate nets on the surface is the quadric of Wilczynski.

The curvilinear differential equation of any conjugate net N on the surface S can be written in the form

$$dv^2 - \lambda^2 du^2 = 0 \qquad (\lambda \neq 0),$$

where λ is a function of u,v. Let us denote the two curves of the net N $_{\lambda}$ that pass through the point P $_{x}$ by C $_{\lambda}$ and C $_{-\lambda}$ according as the direction dv/du has the value λ or $-\lambda$. The curvilinear differential equation of the pencil of conjugate nets determined by the net (7) is

(8)
$$dv^2 - \lambda^2 h^2 du^2 = 0$$
 ($h \neq 0$),

where h is a constant. By a hypergeodesic is meant a curve C, which satisfies a differential equation of the form

(9)
$$\lambda' = A + B\lambda + C\lambda^2 + D\lambda^3$$
 ($\lambda' = \lambda_u + \lambda \lambda_v$), in which the coefficients A,B,C,D are functions of u,v. To each such family of

in which the coefficients A,B,C,B are labeled at $I_1(a,b)$ for which hypergeodesics is associated a cusp-axis, which is the line $I_1(a,b)$ for which

(10)
$$a = \frac{1}{2}(\theta_u + C), \quad b = \frac{1}{2}(\theta_u - B).$$

If equation (8) is solved for h, and if h is then eliminated by total differentiation with respect to u, it becomes apparent that the curves of a pencil of conjugate nets constitute a family of hypergeodesics for which

(11) A=D= 0. B =
$$\lambda_u/\lambda$$
, C = λ_v/λ .

Moreover, the cusp-axis at the point P_X is the line $l_1(a,b)$ for which a and b are given by the formulas

(12) $a = \frac{1}{2}(\theta_v + \lambda v/\lambda), b = \frac{1}{2}(\theta_u - \lambda u/\lambda).$ With these expressions for a and b, the coordinates of the point defined by equations

(13)
$$\begin{aligned} x_1 &= \frac{1}{4}(\theta_v + \lambda v/\lambda)(\theta_u - \lambda u/\lambda) - \frac{1}{2}\theta_{uv}, \\ x_2 &= -\frac{1}{2}(\theta_v + \lambda v/\lambda), \\ x_3 &= -\frac{1}{2}(\theta_u - \lambda u/\lambda), \\ x_4 &= 1. \end{aligned}$$

Finally, homogeneous elimination of λ yields the equation of the quadric of Wilczynski

(14)
$$x_2x_3 - x_1x_1 - \frac{1}{2}\theta_{uv}x_1^2 = 0.$$