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THE QUADRIC OF WILCZYNSKI

M. L. MacQUEEN
Southwestern at Memphis, Tennessee

The purpose of this note 1s to state and prove a theorem concerning the quad—
rle of Wilezynski, In the first place, let S be a non-ruled surface in ordinary pro-
jective space. If the asymptotic curves are chosen as parametric,then S is an integral

surface of a pair of differential equations which can be written in the Fubini canon-

1
ical fom [1]
(1) xuu.px+oux“1-va, b3 =qx*7xu+0‘ﬁc.v (Ozlogﬂr),

Al

in which subscripts indicate partial differentiation, and the coefficients are func—
tions of u,v. Wo select an ordinary point Px of the surface S as one vertex of the
usual local tetrahedron of reference whose vertices are the points Xy X9 KX,
Two lines [l(a.,b), Zz(a,b) are reciprocal lines at a point P, of the surface
if the line [l( a,b) joins the point Px and the point y defined by
(2) ¥y = -a:gl-bocvvx“v
and the line (;(a,b) joins the points (c , @ defined by placing
(3) (: xu-bx, o= xv-ax,
where a,b are functions of u,v. It follows from equations (3) that
{ov a '(bv + ab)x - bC” Xov »
oy = -(%vab)x - ap + Xy
The lines /?(0‘, and ©T 0\: intersect the line [l(a,b) in the respective points

(L)

(5) (ab - bv)x + 3. (ab - au)x + ¥ ‘
The harmonic conjugate of the point Px with respect to these two points is the point
whose local coordinates are ’

= & - 'g'é(an + bv)l

-8,

(6)
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*Lane, E. P. 1942. A treatise on projective differential geometry. Chicago.
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We now propose to prove the following theorem: At a point Px on a surface
the locus of the point (6) for a line [(a,b) which is the cusp-mris of a variable
pencil of conjugate nets on the surface is the guadric of Wileuvnskd,

The curvilinear differential equation of any conjugate net N, on the surface
§ can be written in the form A

@ o - Razo (X A0

where A is a function of u,v. Let us denote the two curves of the net N,\ that pass
through the point P, b by" GA and C—R according as the direction dv/du has the value
A or -A . The curvilinear differential equation of the pencil of conjugate nets
determined by the net (7) is

(8) - Xrta’oo (n?o0),
where h is a constant. By a hypergeodesic is meent a curve c’\ which satisfies a
differential equation of the form

) X=A+B,\+cA2+n/\3 0 Ba= A AN,
in which the coefficients 4,B,C,D are functions of u,v. To each such family of
hypergeodesics is associated a cusp-axis, which is the line [:L(a'b) for which

(10) az ke +0), b= k06, -B).

If equation (8) is solved for h, and if h is then eliminated by total differentiation
with respect to u, it beconmes apparent that the curves of a pencil of conjugate nets
constitute a family of hypergeodesics for which

) AD=0. B=A /A , C= AJ/A.

Moreover, the cusp-axis at the point Px is the line [l(a,b) for which a and b are
given by the formlas

(12) as Ko, + AvW/x), b=kO, - Au/A )

With these expressions for a and b, the coordinates of the point defined by equations

(6) become
x = L0 + Av/x 0, - Au/x ) =k 8y
= x,m 4O, ¢+ AV/A),

x,= (0, = Aw/A),

x“’ = 1.

Finally, hamogensous elimination of A yields the equetion of the quadric of Wil-
ezynski
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(w) R 2o, x, =0




